Министерство сельского хозяйства РФ

ФГОУ ВПО «БРЯНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

АГРОЭКОЛОГИЧЕСКИЙ ИНСТИТУТ

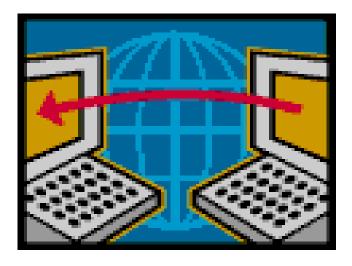
Кафедра экологии, агрохимии и почвоведения

В.Е. Мамеева

СИСТЕМНЫЙ АНАЛИЗ И ОСНОВЫ МОДЕЛИРОВАНИЯ ЭКОСИСТЕМ

Учебно-методическое пособие к лабораторно-практическим работам для студентов, обучающимся по специальности

110102 — Агроэкология



БРЯНСК 2011 г.

УДК 631.95 (07): 574 ББК 45.2: 28.080

M 22

Мамеева В.Е. Системный анализ и основы моделирования экосистем: учебно-методическое пособие к лабораторно-практическим работам для студентов обучающихся по специальности 110102 агроэкология. Брянск. Издательство Брянской ГСХА, 2011 г. 132с.

В учебно-методическом пособии рассматриваются основные методы построения математических моделей процессов, явлений и объектов в экологии; планирование экспериментов и статистическая обработка их результатов; методы их оптимизации. Кроме того пособие предназначено для практического изучения студентами некоторых математических моделей, используемых в популяционной экологии, на базе широко известного пакета компьютерных программ Populus 3.4.

Данное издание предназначено для использования в учебном процессе по агроэкологическим специальностям очного обучения.

Рецензенты: доктор эконом. наук, профессор М.В. Ожерельева к.с. -х. наук, доцент М.М. Кабанов

Рекомендовано к изданию решением учебно-методической комиссии агроэкологического института, протокол N 2011 г.

- © Брянская ГСХА, 2011
- © Мамеева В.Е., 2011

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ
Раздел 1. МЕТОДЫ МАТЕТАТИКО – СТАТИСТИЧЕСКОГО ПРО-
ГНОЗОРОВАНИЯ
Занятие 1: Выборочный метод в экологометрике
Занятие 2: Дисперсионный анализ
Занятие 3. Корреляционный анализ
Занятие 4. Регрессионный анализ
Раздел 2. ДЕТЕРМИНИРОВАННОЕ МОДЕЛИРОВАНИЕ
Занятие 5. Аппроксимация зависимостей
Занятие 6. Численные методы решения уравнений
Раздел 3 МЕТОДЫ ОПТИМИЗАЦИИ
Занятие 7. Метод Лагранжа
Раздел 4. РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Занятие 8. Решение транспортных задач
Занятие 9. Решение задач оптимального финансирования объектов
Занятие 10. Решение задач оптимального использования ресурсов
Раздел 5. МЕТОДЫ АНАЛИЗА СОЦИАЛЬНО-ЭКОЛОГИЧЕСКИХ
СИСТЕМ НА ОСНОВЕ ТЕОРИ ГРАФОВ
Занятие 11. Моделирование сетей питания и экосистемы «хищник –
жертва»
РАЗДЕЛ 6. ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕПОЛНОЙ
ИНФОРМАЦИИЗанятие 12. Использование теории игр для принятия решений
Раздел 7. МАТЕТАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ПОПУЛЯ-
ЦИОННОЙ ЭКОЛОГИИ
Занятие13. Неограниченный (независимый от плотности) рост попу-
ляции
Занятие 14. Ограниченный (зависимый от плотности) рост популяции.
Занятие 15. Модель межвидовой конкуренции Лотки-Вольтерры
Занятие 16. Выбор оптимального пищевого рациона
Занятие 17. Моделирование сетей питания «хищник-жертва».
Модель Лотки-Вольтерры
Занятие 18. Имитационная обучающая программа "Малая река"
Библиографический список
ПРИЛОЖЕНИЯ

ПРЕДИСЛОВИЕ

Понятия "системный подход" и "системный анализ" весьма популярны в наше время. Эффективное решение проблем – производственных, государственных, мировых – требует отнюдь не скоротечных, интуитивных решений, а поэтапного, детального анализа фактов, разнородной информации, наиболее полного учета мнений всех лиц, заинтересованных в решении проблем. Современный системный анализ как междисциплинарная наука нацелен на выяснение причин сложностей и затруднений, возникающих в процессе функционирования реальных систем (организаций, коллективов, промышленных предприятий и т.д.), и выработку вариантов их устранения. Это стало возможно благодаря тому, что системный анализ вобрал в себя методы разных наук (теории систем, системологии, кибернетики, информатики), направленных на исследование технических, природных и социальных систем и поиск наиболее оптимальных условий их существования.

В исследованиях взаимодействия человека с биосферой не обойтись без культуры моделирования, профессионального использования методов обработки информации, методов определения рисков в исследовании устойчивости биоценозов по отношению антропогенных воздействий.

Проблемы экологии — это проблемы естественнонаучные и социальные, которые нельзя разделить, с другой стороны, проблемы экологии требуют от исследователя принятия решений, адаптирующих человеческую деятельность к естественным циклам круговорота веществ в природе.

Системные исследования - интенсивно развивающаяся область научной деятельности, которая является одним из наиболее результативных проявлений интегральных тенденций в науке. Специфика системных исследований состоит в их направленности на изучение сложных, комплексных, крупномасштабных проблем, для описания которых приходится привлекать понятия, изучаемые в рамках различных традиционных научных дисциплин.

Раздел 1 МЕТОДЫ МАТЕМАТИКО – СТАТИСТИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

Статистические методы прогнозирования базируются на использовании накопленной статистической информации об изменении показателей, характеризующих анализируемый объект или процесс.

Для анализа с использованием статистических методов необходимо, чтобы число наблюдений было достаточно большим, не менее 20-30, иначе достоверность выводов существенно снижается.

При исследовании взаимосвязей между признаками на основе статистического анализа обычно решают следующие задачи:

- 1. Существует ли связь между результатом и выбранными для анализа факторами;
 - 2. Какова количественная мера связи;
 - 3. Какова аналитическая форма выражения связи;
- 4. Какова надёжность найденной закономерности и возможности использования параметров уравнения для решения оптимизационных моделей.

Ответ на первый вопрос дают дисперсионный и корреляционный анализ. Количественную меру зависимости определяют с помощью регрессионного анализа.

Занятие 1: Выборочный метод в экологометрике

Наблюдения, проводимые над экологическими объектами, могут охватывать всю совокупность или группу объектов. В первом случае наблюдение будет называться *сплошным*, а во втором – *выборочным*.

Задача выборочного метода состоит в том, чтобы на основе знаний свойств выборки можно было сделать какие-либо утверждения о свойствах всей совокупности объектов, которую называют *генеральной совокупностью*.

Под генеральной совокупностью для данного объекта исследования понимается бесчисленное множество таких же объектов, которые можно считать похожими по тем или иным свойствам или характеристикам. Однако между этими похожими объектами можно также обнаружить некоторые свойства и характеристики, отличающие один объект от другого, например, изучая воздушную среду планеты. В то же время при изучении содержания кислорода в воздухе мы должны учитывать высоту местности над уровнем моря и поэтому различные города можно отнести к различным группам по этому признаку.

Таким образом, совокупность объектов, которые объединены в нечто однородное по некоторым признакам и в то же время по другим признакам расчленены на группы, включающие в себя определённое число объектов, называется *статистической совокупностью*. При этом те признаки, по которым совокупность расчленяется на группы, называются *группированными* признаками, которые в свою очередь подразделяются на качественные (атрибутивные) и количественные (вариационные).

Поскольку при выборочном наблюдении обследуется только часть единиц, то показатели выборки могут отличаться от показателей генеральной совокупности. Обозначим следующими символами показатели генеральной и выборочной совокупностей: численность единиц генеральной совокупности N и выборочной — n; средние величины соответственно x0 и μ , а средние квадратические отклонения - σ_0 и σ . Средняя квадратическая ошибка выборки вычисляется по формуле: $m = \frac{\sigma_0}{\sqrt{n}}$

Конкретная ошибка каждой выборки может быть определена по формуле:

$$E = tm = t \frac{S}{\sqrt{n}}$$
, где

$$S^2 = \sigma^2 \frac{n}{n-1}$$
-скорректированная дисперсия выборки; t-
нормированное отклонение, которое может быть установ-
лено по таблице значений интеграла вероятностей для за-
данной величины доверительного уровня.

Для получения выборочных статистик случайной величины X можно воспользоваться подпрограммой «Описательная статистика» из набора «Анализ данных» табличного процессора Excel. Там же имеется подпрограмма «Гистограмма», с помощью которой можно построить гистограммы для выборок.

Выборочные статистики и гистограммы позволяют сделать предварительное заключение о законе распределения случайной величины X. Результаты расчётов описательной статистики для некоторой случайной величины приведены в таблице 1.

Таблица 1

Среднее	176,941
Стандартная ошибка	7,611
Медиана	180
Мода	183
Стандартное отклонение	31,383
Дисперсия выборки	984,933
Эксцесс	1,172
Асимметричность	-0,986
Интервал	119
Минимум	104
Максимум	223
Сумма	3008
Счёт	17

Если закон распределения случайной величины близок к нормальному, то среднее значение (математическое

ожидание), медиана и мода должны незначительно отличаться или быть равными друг другу, а показатель ассиметричности должен стремиться к нулю.

Нормальное распределение играет особую роль в теории вероятностей и математической статистике. Как показывает практика, самые разнообразные статистические данные с хорошей степенью точности можно считать выборками из нормального распределения. Можно предполагать нормальное распределение у случайной величины, если на её отклонение от некоторого заданного значения влияет множество различных факторов, причём влияние каждого из них вносит малый вклад в это отклонение, а их действия независимы или почти независимы.

Кроме того, в силу центральной предельной теоремы и её разновидностей, распределение целого ряда широко распространённых в статистике функций от случайных величин (статистик, оценок) хорошо аппроксимируется нормальным распределением.

Выборки, численность которых не превышает 20 единиц наблюдения, называются малыми. Малые выборки часто используются для проверки статистических гипотез, т.е. предположений о видах распределения случайных величин или о параметрах этих распределений. Для больших выборок проверки гипотез выполняются с использованием нормального распределения вероятностей, а для малых выборок — с использованием распределения Стьюдента. Нормированное отклонение t в этом случае определяется по таблицам t-распределения для заданного уровня вероятности суждения и числа степеней свободы вариации ν (числа единиц, способных изменяться после того, как для выборки была определена её общая характеристика).

Если данные двух выборок независимы, то статистической гипотезе подвергают разность средних значений выборок.

Вообще, если x_{11},\ldots,x_1 и x_{21},\ldots,x_{2n2} суть случайные выборки из популяций соответственно с распределениями $N(\mu_1\sigma_1^2)$ и $N(\mu_2,\sigma_2^2)$, причём $\sigma_1^2=\sigma_2^2=\sigma^2$, то нулевую гипотезу H_0 : $\mu_1-\mu_2=\delta$, где δ -константа, можно проверить с помощью двухвыборочного t-критерия. Статистикой критерия является

$$t_0 = \left(\left(x_1 - x_2 \right) - \delta / \left(S_p \, \frac{1}{n_1} + \frac{1}{n_2} \right) \right)$$
, где

 x_1, x_2 – оценки математического ожидания для выборок;

$$S_p = \{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2\}/(n_1 + n_2 - 2)$$

- выборочная дисперсия, представляющая собой несмещённую оценку общей дисперсии σ^2 .

Если гипотеза H_0 верна, то t_0 имеет t-распределение Стьюдента $c \nu = n_1 + n_2 - 2$ степенями свободы. P - значение зависит от альтернативной гипотезы и приводится в таблице 2.

Таблица 2

Нулевая гипотеза	Альтернативная гипотеза	Р-значение
H ₀ :	$H_1: \mu_1 - \mu_2 > \delta$	$P = P_r(t(v) > t_0)$
$\mu_1 - \mu_2 = \delta$	$H_1: \mu_1 - \mu_2 < \delta$	$P = P_r(t(v) < t_0)$
	$H_1: \ \mu_1 - \mu_2 \neq \delta$	$P = 2P_r(t(v)) > t_0 $

Во всех случаях мы отвергаем Н₀, если Р<а.

Здесь 100 (1-а)%-ным доверительным интервалом для разности $\mu_1 - \mu_2$ между средними является

$$\left(x_1-x_2\right)\pm t_{1-(a/2)}(n_1+n_2-2)S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}$$
 , где

 $t_{1-(a/2)}(n_1+n_2-2)$ есть 100(1-a/2)-я проентиль ${\bf t}$ - распределения Стьюдента ${\bf cn_1}$ + ${\bf n_2}$ -2 степенями свободы.

<u>Пример 1</u> Проведён эксперимент, в котором проверялся новый рацион кормления коров, содержащий добавки кальция и микроэлементы. Данные по среднесуточным удоям приведены в таблице 3. требуется определить, можно ли рассматривать полученные различия в средних значениях по группам коров достаточными, чтобы сделать заключение о существенном влиянии опытного рациона на суточные удои.

Таблица 3

№ п.п.	Контрольная группа	Опытная группа
J \ ≌ 11.11.	X_1	X_2
1	10,5	13,6
2	12,4	14
3	9,9	11,3
4	11,2	13,5
5	13	15,6

Решение задачи начинается с создания исходной таблицы на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемся списке функций выделяется курсором имя Двухвыборочный t-тест с различными дисперсиями. В открывшемся окне функции указывается диапазон ячеек, содержащий входные данные, для чего необходимо протащить указатель мыши при нажатой левой кнопке повсем ячейкам таблицы с данными на рабочем листе, а также задаётся выходной интервал щелчком левой кнопки мыши по свободной ячейке под исходной таблицей. Указав группировку дан-

ных по столбцам и уровень значимости $\alpha = 0.05$, щёлкаем по кнопке ОК, после чего на рабочем листе, начиная с выделенной ранее ячейки, выводятся результаты вычислений, приведённые ниже.

Двухвыборочный t-тест с различными дисперсиями

	X1	X2
Среднее	11,4	13,6
Дисперсия	1,665	2,365
Наблюдения	5	5
Гипотетическая разность	0	
средних		
Df	8	
t-статистика	-2,45050256	
P(T <t) td="" одностороннее<=""><td>0,01995272</td><td></td></t)>	0,01995272	
t критическое односто-	1,85954832	
роннее		
P(T <t) td="" двухстороннее<=""><td>0,03990544</td><td></td></t)>	0,03990544	
t критическое	2,30600563	
двухстороннее		

Фактическое значение t-критерия по модулю превышает критическое двустороннее, следовательно, данные не согласуются с гипотезой о том, что различия в средних случайны.

В том случае, если необходимо сравнивать показатели для одной и той же группы объектов (или идентичных по качествам) до и после проведения над ними какоголибо эксперимента (зависимые выборки), требуется использование парного t-критерия, когда оценивается *средняя разность показателей*.

В этой ситуации у нас есть две случайные величины X_1 и X_2 , определённые на одной и той же популяции W.

Пусть $\mu_1 u \sigma_1^2$ - среднее и дисперсия X_{ij} а $\sigma_{ij} = \sigma_{ij}$ ковариация между X_i и X_j (i,j=1,2).

Если X_1 и X_2 - сравнимые измерения для одной группы индивидуумов, то гипотеза H_0 : $\mu_1 - \mu_2 = \delta$ может быть проверена с помощью парного t-критерия, называемого также t-критерия для связанных выборок. Статистикой критерия служит

$$t_0 = ((x_1 - x_{2)} - \delta) \frac{\sqrt{n}}{S}$$
, где

 $S_d^2 = S_1^2 + S_2^2 - 2S_{12}$ -оценка дисперсии, S_{12} -оценка ковариации.

При выполнении гипотезы H_0 статистика t_0 имеет t - распределение Стьюдента cv = n-1 степенями свободы.

Пример 2. В таблице 4 приведены данные полевого опыта, в котором проверялось влияние фосфорных удобрений на урожайность гороха. При разбивке делянок учитывались различия по плодородию и рельефу, так что пары делянок являются идентичными.

Таблица 4 Урожайность гороха, ц/га

Группи	Контрольные	Опытные	
Группы делянок	делянки	делянки	
делянок	X_1	X_2	
1	21	23,6	
2	19,4	21,9	
3	20,2	21,6	
4	19,3	20,1	

Решение задачи начинается с создания исходной таблицы на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемсяспис-

ке функций выделяется курсором имя **Парный двухвыборочный t-тест** для **средних**. В открывшемся окне функции указывается диапазон ячеек, содержащий входные данные, для чего необходимо протащить указатель мыши при нажатой левой кнопке мыши по свободной ячейке под исходной таблицей. Указав гипотетическую разность средних равной нулю и уровень значимости $\alpha = 0.05$, щёлкаем по кнопке **ОК**, после чего на рабочем листе, начиная с выделенной ранее ячейки, выводятся результаты вычислений, приведённые ниже.

Парный двухвыборочный t-тест для средних

	X_1	X_2
Среднее	19,975	21,8
Дисперсия	0,629166667	2,06
Наблюдения	4	4
Корреляция Пирсона	0,846174873	
Гипотетическая разность	0	
средних		
Df	3	
t-статистика	-4,17996784	
P(T <t) td="" одностороннее<=""><td>0,012472866</td><td></td></t)>	0,012472866	
t критическое	2,353363016	
одностороннее		
P(T <t) td="" двухстороннее<=""><td>0,024945731</td><td></td></t)>	0,024945731	
t критическое	3,182449291	
двухстороннее		

Занятие 2: Дисперсионный анализ

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

На практике часто возникают задачи более общего характера — задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.

Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объеди-

нить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

Дисперсионный анализ бывает **однофакторный** (в эксперименте участвует один фактор) и **многофакторный** (более одного фактора).

Однофакторный дисперсионный анализ

На первом этапе выделяются входной и результативный факторы. Для входного используются одновременно несколько вариантов (уровней) и каждому варианту входного фактора соответствует определённый вариант проведения опыта.

Кроме того на каждом уровне входного фактора проводят несколько наблюдений, т.е. повторяют эксперимент (4-ре или 5-ть повторностей).

Методом дисперсионного анализа выявляется значимость изучаемого фактора и количественно оценивается степень его влияния.

Суть метода заключается в разложении рассеивания случайной величины на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия (разложение обычной дисперсии на составляющие).

Степень влияния изучаемых входных факторов оценивается долей воздействия, т.е. величиной соответствующей дисперсии.

Доля вклада или рассеивания рассчитывается как отношение суммы квадратов слагаемого (составляющей) к общей сумме квадратов и выражается в % .

Общая вариация результативного признака разложена на три составляющих:

- 1. Вариация фактора это и есть воздействие фактора на результативный фактор (результат).
- 2. Оценивает закономерное действие неконтролируемых факторов внутри каждого из уровней изучае-

- мого фактора от повторения к повторению. Это так называемая вариация повторений.
- 3. Остаток оценивает вклад случайных незакономерных факторов и может служить оценкой точности опыта. То есть чем меньше 2 и 3, тем больше основной фактор.

Для оценки значимости действия изучаемого фактора рассматривается показатель статистики - **Критерий Фи- шера (F-критерий).**

Сравниваются фактическое и теоретическое значение Фишера.

 Φ актическое значение — это отношение дисперсий варианта к дисперсии остатка (вычисляем в программе).

F - теоретическое для принятого в исследовании уровня значимости находят по таблицам с учётом числа степеней свободы для дисперсии вариантов и случайной дисперсии. В большинстве случаев используют 5-% уровень значимости.

Чем больше \mathbf{F} - факт. > \mathbf{F} - теор., тем более закономерный характер имеет действие изучаемого фактора (между признаками существует взаимосвязь).

Если это равенство выполняется, то важное значение имеет составление:

- 1. НСР (критерий наименьших критических разностей)
- 2. **d** разность 2-х выборочных средних.
- HCP теоретическое значение означающее возможную предельную ошибку разности 2-х средних (как эталон с которым сравнивается фактическое значение).

Если **HCP** >или= **d**, то взаимосвязь существенна или значима, если **HCP** <**d**, то несущественна.

Основные вычисления.

Подсчитать SSфакт.	SSфакт. = $1/n \Sigma T^2 c - 1/n (\Sigma xi)^2$
Подсчитать SSобщ.	SSобщ. = $\Sigma x^2 i - 1/N (\Sigma x i)^2$
Подсчитать случайную остаточную величину SSсл.	SSсл. = SSобщ. – SSфакт.
Определить число степеней	dfфакт. = c − 1
свободы	dfобщ. = N − 1
	dfcл. = dfoбщ dfфaкт.
Разделить каждую SS на соответствующее число степеней свободы	МЅфакт. = SЅфакт. / dfфакт. MS сл. = SS сл. / df сл.
Подсчитать значение Гэмп.	Fэмп. = МSфакт. / МS сл.
Определить по таблицам	При Ерми >- Екр. Н.
критические значения F и сопоставить с ним полученное эмпирическое значение	При Гэмп. $>=$ Гкр. H_0 отклоняется.

Принятые в литературе сокращения:

СК или SS – сумма квадратов

SSфакт. – вариативность, обусловленная действием исследуемого фактора

SSобщ. – общая вариативность

SSсл. – случайная вариативность

MS – «средний квадрат» (математическое ожидание суммы квадратов, усредненная величина соответствующих SS)

df – число степеней свободы.

В состав Microsoft Excel входит набор средств анализа данных (так называемый пакет анализа), предназначенный для решения сложных статистических и инженерных задач. Для проведения анализа данных с помощью этих инструментов следует указать входные данные и выбрать параметры; анализ будет проведен с помощью подходящей статистической или инженерной макрофункции, а резуль-

тат будет помещен в выходной диапазон. Другие средства позволяют представить результаты анализа в графическом виде. Чтобы просмотреть список доступных инструментов анализа, выберите команду **Анализ данных** в меню **Сервис**. Если команда Анализ данных в меню Сервис отсутствует — необходима установка пакета анализа.

Пакет анализа включает в себя три средства дисперсионного анализа. Выбор конкретного инструмента определяется числом факторов и числом выборок в исследуемой совокупности данных.

Пример 1. Для выяснения роли обработки инсектицидом были выделены два участка с яблонями, причём только первый был обработан, а второй оставлен контрольным. Количество яблок, собранных с каждой яблони приведено в таблице 1. Можно ли считать различия достоверными, т.е. можно ли считать, что применение инсектицида увеличивает урожай?

Таблица 1 Количество яблок, собранных с одной яблони, кг

Повторности	Обработанные	Необработанные	
Повторности	деревья	деревья	
1	210	174	
2	240	162	
3	197	154	
4	205	173	
5	183	148	
6	191	157	
7	197	150	
8	201	163	
9	193	170	
10	203	169	

Решение таблицы начинается с создания исходной таблицы на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемся списке функций выделяется курсором имя Однофакторный дисперсионный анализ. В открывшемся списке функций указывается диапазон ячеек, содержащий входные данные, для чего необходимо протащить указатель мыши при нажатой левой кнопке по всем ячейкам таблицы с данными на рабочем листе, а также задаётся выходной интервал. Указав группировку данных по столбцам и уровень значимости а=0,05, щёлкаем по кнопке ОК, после чего на рабочем листе, начиная с указанной ячейки, выводятся результаты вычислений, приведённые ниже.

Однофакторный дисперсионный анализ

ИТОГИ

Группы	Счет	Сумма	Среднее	Дисперсия
Обработанные				
деревья	10	2020	202	236,888889
Необработанные				
деревья	10	1620	162	89,7777778

Дисперсионный анализ

Источник					P-	F
вариации	SS	df	MS	F	Значение	критическое
Между группами	8000	1	8000	48,9795918	1,5579E-06	4,413873405
Внутри групп	2940	18	163,3333			
Итого	10940	19				

Как видно из полученных данных, фактическая величина F-критерия значительно больше табличного (критического) значения, что свидетельствует о существенных различиях между групповыми средними, которые не могут

быть результатами случайного варьирования.

Двухфакторный дисперсионный анализ без повторения. Представляет собой двухфакторный анализ дисперсии, включающий более одной выборки на группу. Используется для проверки гипотезы о том, что средние значения двух или нескольких выборок одинаковы (выборки принадлежат одной и той же генеральной совокупности). Этот метод распространяется также на тесты для двух средних, такие как t-критерий.

Пример 2. В таблице приведены данные опыта, в котором исследовалось влияние органических удобрений и способов вспашки пашни на урожайность зерна ячменя. Сделайте вывод о действии данных факторов на величину урожайности ячменя.

Урожайность ячменя, ц/га

Способ		Органические удобрения		
обработки	Делянки	без удобрений	навоз	копролит
Отвальная	1	22,0	32,0	45,0
вспашка	2	21,5	35,1	43,8
	3	22,2	36,5	45,2
	4	23,5	37,8	46,2
Безотвальная	1	26,5	40,1	48,9
вспашка	2	28,1	38,9	49,0
	3	30,5	39,4	50,1
	4	28,5	40,0	48,9

Решение таблицы начинается с создания исходной таблицы на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемся списке функций выделяется курсором имя Двухфакторный дисперсионный анализ с повторениями. В открывшемся списке функций указывается диапазон ячеек, содержащий входные данные, для чего необходимо протащить указатель мыши при нажатой левой кнопке по всем ячейкам таблицы с данными на рабочем листе, включая

строку с заголовком столбцов и столбец с номерами делянок. Затем задаётся число строк каждой выборки (4) и уровень значимости a=0,05, щёлкаем по кнопке \mathbf{OK} , после чего на рабочем листе, начиная с указанной ячейки, выводятся результаты вычислений, приведённые ниже.

Двухфакторный дисперсионный анализ с повторениями

ИТОГИ	Без удобрений	Навоз	Копролит	Итого
1				
Счет	4	4	4	12
Сумма	89,2	141,4	180,2	410,8
Среднее	22,3	35,35	45,05	34,23333333
Дисперсия	0,726667	6,203333333	0,97	96,9369697
1				
Счет	4	4	4	12
Сумма	113,6	158,4	196,9	468,9
Среднее	28,4	39,6	49,225	39,075
Дисперсия	2,706667	0,313333333	0,3425	79,91840909
Итого				•
Счет	8	8	8	
Сумма	202,8	299,8	377,1	
Среднее	25,35	37,475	47,1375	
Дисперсия	12,10286	7,953571429	5,542678571	

диспе	рсионныи	анализ

Источник						F
вариации	SS	df	MS	F	Р-Значение	критическое
Выборка	140,6504	1	140,6504167	74,93029967	7,8339E-08	4,413873405
Столбцы Взаимо-	1906,866	2	953,4329167	507,9331853	1,46985E-16	3,554557146
действие	4,755833	2	2,377916667	1,26681465	0,305675823	3,554557146
Внутри	33,7875	18	1,877083333			

Как и в однофакторном опыте, здесь проверяется гипотеза о случайном характере различий между средними урожайностями кукурузы по исследуемым факторам (способам обработки и видам органических удобрений). Результаты расчётов показывают, что способы обработки (выборки) и удобрения (столбцы) носят существенные отличия в показателях урожайности, так как соответствующие F критерии значительно превышают критическое значение.

Задания для самостоятельного выполнения

ВАРИАНТ 1

В таблице 1 приведены данные опыта, в котором исследовалось влияние биопрепарата на ускорение роста и развития корневой системы сои. Сделайте вывод о действии данного фактора на величину.

Таблица 1 Масса корневой системы сои, г

Повторности	Вариант 1	Вариант 2	Вариант 3
1	9,02	8,72	9,21
2	11,20	11,60	11,00
3	10,80	9,50	10,50
4	10,7	12,30	12,08
5	10,50	10,71	10,40
6	11,80	11,50	10,90
7	12,00	11,90	11,40

В таблице 2 приведены данные опыта, в котором исследовалось влияние удобрений на полевую всхожесть клубней картофеля, %. Сделайте вывод о действии данного фактора на величину.

Таблица 2 Полевая всхожесть клубней картофеля, %

Повторности	Вариант 1	Вариант 2	Вариант 3
1	88,43	89,24	89,33
2	93,48	93,54	93,45
3	90,00	89,87	90,12
4	92,5	92,41	91,72
5	92,56	91,93	92,85
6	94,03	93,19	93,00
7	94,49	93,70	93,21

ВАРИАНТ 3

В таблице 3 приведены данные опыта, в котором исследовалось влияние минерального удобрения на содержание обменного калия в почве, мг/100 г. почвы. Сделайте вывод о действии данного фактора на величину.

Таблица 3 Содержание обменного калия в почве, мг/100 г. Почвы

Повторности	Вариант 1	Вариант 2	Вариант 3
1	5,21	5,10	5,05
2	5,21	5,13	5,09
3	6,10	5,96	5,94
4	6,07	6,00	5,97
5	6,43	6,08	6,06
6	6,32	5,99	6,13
7	6,45	6,14	6,16

В таблице 4 приведены данные опыта, в котором исследовалось влияние удобрений на площадь листовой поверхности одного растения, м 2 томатов. Сделайте вывод о влиянии данного фактора на величину.

Таблица 4 Площадь листовой поверхности одного растения, м 2

Повторности	Вариант 1	Вариант 2	Вариант 3
1	1,18	1,05	1,10
2	1,16	1,07	1,08
3	0,84	0,91	0,80
4	0,84	0,94	0,80
5	0,75	0,84	0,82
6	0,77	0,83	0,82
7	0,70	0,80	0,83

ВАРИАНТ 5

В таблице 5 приведены данные опыта, в котором исследовалось влияние удобрений на количество стеблей, шт/куст картофеля. Сделайте вывод о влиянии данного фактора на величину.

Таблица 5 Количество стеблей картофеля, шт/куст

Повторности	Вариант 1	Вариант 2	Вариант 3
1	4,25	4,27	4,26
2	5,45	5,50	5,40
3	6,41	6,40	6,41
4	6,38	7,27	7,25
5	6,13	6,57	6,50
6	6,95	7,28	7,10
7	8,10	8,53	8,35

В таблице 6 приведены данные опыта, в котором исследовалось влияние удобрений на содержание нитратного азота в клубнях картофеля, мг/кг сырой массы. Сделайте вывод о влиянии данного фактора на величину.

Таблица 6 Содержание нитратного азота в клубнях картофеля, мг/кг сырой массы

Повторности	Вариант 1	Вариант 2	Вариант 3
1	94,7	90,1	96,7
2	95,1	90,8	97,2
3	96,1	92,3	97,9
4	96,5	92,3	97,8
5	97,0	92,8	98,3
6	97,4	93,0	98,5
7	96,4	91,9	97,4

ВАРИАНТ 7

В таблице 7 приведены данные опыта, в котором исследовалось влияние органических удобрений и способов вспашки пашни на урожайность кукурузы. Сделайте вывод о действии данных факторов на величину урожайности зелёной массы кукурузы.

Таблица 7 Урожайность кукурузы, ц/га

		Органич	неские удобрения		
	Повторности	без удобрений	навоз	копролит	
Отвальная	1	220	320	450	
вспашка	2	215	351	438	
	3	222	365	452	
	4	235	378	462	
Безотвальная	1	265	401	489	
вспашка	2	281	389	490	

3	305	394	501
4	285	400	489

В таблице 8 приведены данные опыта, в котором исследовалось влияние биопрепаратов и макроэлементов минеральных удобрений на высоту вегетативной массы растений сои. Сделайте вывод о действии данных факторов на высоту растений.

Таблица 8 Высота вегетативной массы растений сои, см

		Вариант	Варианты обработки растворами			
	Повторности	Без	аммиачной	хлористого		
		обработки	селитры 50%	калия 20%		
	1	90,1	100,1	105,6		
	2	90,5	99,0	104,5		
эмистим	3	90,0	106,0	107,8		
	4	93,5	102,5	108,0		
	5	94,5	100	104,6		
	1	98,2	112,0	113,5		
	2	95,6	115,3	118,3		
никфам	3	97,8	117,3	117,3		
	4	96,9	113,5	118,3		
	5	98,1	115,1	115,6		

ВАРИАНТ 9

В таблице 9 приведены данные опыта, в котором исследовалось влияние копролита на содержание сухого вещества в клубнях картофеля, %, высаженного на участках с разными предшественниками. Сделайте вывод о действии данных факторов на содержание сухого вещества в клубнях картофеля.

Таблица 9 Содержание сухого вещества в клубнях картофеля, %

Прания		Варианты внесения копролита			
Предше- ственники	Повторности	контроль	копролит 2 т/га	копролит 4 т/га	
	1	22.6			
	1	22,6	23,40	21,53	
	2	21,26	22,16	20,40	
Озимая рожь	3	21,53	23,13	19,23	
	4	21,35	23,53	17,23	
	5	23,20	24,40	22,60	
	1	22,66	23,80	21,52	
Многолетние	2	22,26	23,40	21,02	
	3	22,56	24,06	18,00	
травы	4	22,6	23,40	21,53	
	5	21,26	22,16	20,40	

В таблице 10 приведены данные опыта, в котором исследовалось влияние органических удобрений и способов вспашки пашни на урожайность зерна ячменя. Сделайте вывод о действии данных факторов на величину урожайности ячменя.

Таблица 10 Урожайность ячменя, ц/га

		Органические удобрения				
	Повторности	без удобрений	навоз	копролит		
Отвальная	1	22,0	32,0	45,0		
вспашка	2	21,5	35,1	43,8		
	3	22,2	36,5	45,2		
	4	23,5	37,8	46,2		
Безотвальная	1	26,5	40,1	48,9		
вспашка	2	28,1	38,9	49,0		
	3	30,5	39,4	50,1		

4	28,5	40,0	48,9
•	-0,0	,0	. 0,>

Занятие 3. Корреляционный анализ

Термин «корреляция» происходит от английского слова correlation, что означает соотношение, соответствие. Понятие корреляции введено в науку английским учёным Ф. Гальтоном (1888 г.) и развито его учеником К. Пирсоном (1895 г.). К изучению связи методом корреляции обращаются в том случае, когда невозможно элиминировать (изолировать) влияние посторонних факторов либо потому, что они неизвестны, либо из-за невозможности их изоляции. Кроме того метод позволяет найти и оценить количественную меру тесноты связи между взаимосвязанными признаками. При этом численность выборки должна быть достаточно большой, так как малое количество наблюдений не позволяет обнаружить закономерность связи.

Важной числовой характеристикой статистической связи между двумя случайными величинами X и Y является коэффициент корреляции, который равен

$$R_{XY} = \frac{1}{\sigma_x \sigma_y} M[(x - M_X)(y - M_Y)]$$

где M - математическое ожидание; σ_x . σ_y - средне-квадратические отклонения случайных величин.

Если $R_{XY}=0$, то величины являются статистически независимыми, если $R_{XY}=1$, то случайные величины связаны линейной зависимостью. В общем в случае - $1 \le R_{XY} \ge 1$ и чем больше по модулю коэффициент корреляции, тем более тесная связь существует между рассматриваемыми величинами.

При построении математической модели объекта по экспериментальным данным целесообразно вначале анали-

зировать влияние всех факторов на целевую функцию, а затем оценивать корреляцию между факторами и строить модель для их минимального количества. При высокой значимости корреляционной связи между парами факторов любой из них можно исключить из рассмотрения, как не содержащий дополнительной информации об объекте исследования. Оценка корреляционной связи между несколькими случайными величинами выполняется при получении корреляционной матрицы, каждый элемент которой отражает связь между парой соответствующих факторов. Вычисление корреляционной матрицы рассмотрим на следующей примере:

<u>Пример 1.</u> В приложении 1 приведены показатели сельскохозяйственного производства Брянской области за 1996-2007 годы. Требуется оценить корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (\mathbf{y}) от каких факторов как посевные площади всех культур в хозяйствах всех категорий; урожайность зерновых культур; реализация картофеля; поголовье коров основного стада; реализация молока и молочных продуктов $(X_2, X_8, X_{14}, X_{17}, X_{26})$.

Решение задачи начинается с создания исходной таблицы (таблица 1) на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемся списке функций выделяется курсором имя Корреляция.

Таблица 1

У	x2	x8	x14	x17	x26
-3,1	1169,6	13,6	46,8	271,2	251,1
-10,4	865,8	14,3	17,5	180,3	144,5
-5,7	882,4	15,4	30,3	176,2	153,5
-13,7	864,4	19,2	22,9	168	151,2
-6,9	864,6	18,6	22,1	150,2	149,2
0,9	739,5	18,8	24,7	134,2	145,2

2,9	715,1	19,3	22	125,1	151,1
1,2	684,5	17,7	31	117,2	147,2
7,8	675,7	18,1	58,9	111,1	137,6

В открывшемся окне функций необходимо задать входной интервал ячеек с данными, для чего необходимо протащить указатель мыши с нажатой левой кнопкой по необходимым ячейкам исходной таблицы, исключая заголовки столбцов. Кроме того, необходимо указать, что данные группируются по столбцам и метки данных находятся в первой строке, для чего достаточно выделить в окне соответствующие надписи. После этого задаётся выходной интервал ячеек, для чего достаточно щёлкнуть левой кнопкой мыши по первой ячейке выходного диапазона, затем выполняется щелчок, по кнопке **ОК** окна и на экране, в указанном ранее месте, появляется треугольная матрица (таблица 2), приведённая ниже.

Таблица 2

	y	<i>x2</i>	<i>x8</i>	x14	x17	x26
У	1					
x2	-0,50553	1				
x8	0,251255	-0,70553	1			
x14	0,597732	0,093389	-0,20508	1		
x17	-0,47022	0,985587	-0,77151	0,113238	1	
x26	-0,07658	0,865759	-0,60827	0,360537	0,881093	1

Как показывают приведённые результаты, факторы X_2, X_{14}, X_{17} имеют существенную корреляционную связь с функцией У (т.к. R_{XY} по модулю $\geq 0,3$), тогда как факторы X_8 и X_{26} имеют слабую корреляцию (т.к. R_{XY} по модулю < 0,3). Следовательно, при моделировании функции. У достаточно учитывать факторы X_2, X_{14}, X_{17} , а факторы X_8 и X_{26} можно исключить из рассмотрения, как малосущественные.

Задания для самостоятельного выполнения

ВАРИАНТ 1

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от наличия тракторов в хозяйствах всех категорий; валового сбора зерновых культур; реализации яиц; производства молока в хозяйствах всех категорий; реализации скота и птицы; поголовья КРС.

ВАРИАНТ 2

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от производства шерсти в хозяйствах всех категорий; урожайности зерновых культур; реализации картофеля; поголовья свиней в хозяйствах всех категорий; посевных площадей всех культур в хозяйствах всех категорий.

ВАРИАНТ 3

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от наличия зерноуборочных комбайнов; валового сбора картофеля; реализации овощей; поголовья овец в хозяйствах всех категорий; реализации молока и молочных продуктов (в пересчёте на молоко).

ВАРИАНТ 4

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по

всей деятельности в с.-х. предприятиях (\mathbf{y}) от производства яиц в хозяйствах всех категорий; урожайности картофеля; поголовья коров основного стада; посевных площади с.-х. зерновых культур.

ВАРИАНТ 5

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от производства яиц в хозяйствах всех категорий; урожайности картофеля; поголовья коров основного стада; посевных площади с.-х. зерновых культур.

ВАРИАНТ 6

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от посевных площадей с.-х. картофеля в хозяйствах всех категорий; валового сбора овощей открытого грунта; реализованного на убой скота и птицы в хозяйствах всех категорий; среднегодового удоя от одной коровы.

ВАРИАНТ 7

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от посевных площадей с.-х. овощей в хозяйствах всех категорий; поголовья коров основного стада; урожайности овощей; реализации зерна.

ВАРИАНТ 8

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (\mathbf{Y}) от валового сбора зер-

новых культур; реализации яиц; урожайности картофеля; поголовья коров основного стада.

ВАРИАНТ 9

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (\mathbf{Y}) от наличия зерноуборочных комбайнов; валового сбора картофеля; реализации молока и молочных продуктов (в пересчёте на молоко).

ВАРИАНТ 10

Используя приложение 1 оцените корреляционную зависимость уровня рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях (У) от производства шерсти в хозяйствах всех категорий; урожайности зерновых культур; поголовья коров основного стада; урожайности овощей.

Занятие 4. Регрессионный анализ

Под регрессией понимается функция, предназначенная для описания зависимости изменения результативных признаков под влиянием колебаний признаков-факторов. Понятие регрессии введено в науку по предложению английского ученого Ф. Гальтона.

При построении математических зависимостей могут быть использованы две формы связей между функцией и переменными: функциональная и регрессионная. Если функциональные связи точно выражаются аналитическими уравнениями, то регрессионные связи выражаются уравнениями лишь приближённо. В общем случае можно сказать, что связь между функцией и аргументами будет тогда функциональной, когда будут учтены все аргументы, определяющие значение функции.

Уравнение регрессии составляется исследователем на основе характера связи между функцией и аргументами. Вопрос о форме связи решается, как правило, поэтапно.

Вначале рассматривается линейная форма связи вида:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots b_n X_n$$
.

где X_i -факторы (i=1,2,... п), так как такая форма связи часто встречается на практике и для неё разработан хороший математический аппарат.

При этом могут решаться следующие задачи:

- установление точности определений коэффициентов уравнения регрессии b_i в виде значений дисперсий $S^2(b_i)$ или величины доверительных интервалов;
 - установление значимости коэффициента b_i;
- проверка адекватности установленной формы связи и экспериментальных данных.

При установлении тесноты связи между У и X решается задача установления строгости соблюдения функциональной зависимости между изменениями У и X. Для оценки тесноты связи между случайными переменными величинами используются показатели:

- а) в случае линейной формы связи
- коэффициент парной корреляции r_{xy} или r_{yx} , характеризующий строгость соблюдения пропорциональности, т.е. близость исследуемой формы связи с линейной;
- коэффициент частной корреляции r_{yx1x2} , характеризующий тесноту связи между изучаемыми переменными при условии, что влияние остальных факторов исключается;
- коэффициент множественной корреляции $R_{yx1x2....xn}$, характеризующий суммарное влияние всех факторов на величину Y;
 - б) в случае нелинейной формы связи
- корреляционное отношение р, которое является характеристикой, насколько строго соблюдается функциональная связь между исследуемыми переменными. Этот

показатель применим и для оценки тесноты связи в случае линейной формы связи. В этом случае он равен абсолютному значению коэффициента парной корреляции;

- множественное корреляционное отношение $R_{yx_{1}x_{2}...x_{n}}$, которое является характеристикой тесноты связи между У и Х. Аппарат корреляционно-регрессионного анализа используют в двух направлениях:
- 1) для проведения статистического анализа результатов наблюдений пассивных экспериментов, в которых независимые переменные X_i не могут изменяться экспериментатором, т.е. не регулируются. В результате такого анализа решение вопроса о виде формы связи не является окончательным, т.е. можно принять в качестве математической модели процесса большое число уравнений регрессии, которые могут удовлетворять полученным экспериментальным данным;
- 2) совместно с методом наименьших квадратов (МНК) и анализа их результатов. В этом случае планирование экспериментов осуществляется в соответствии с принятым видом уравнения связи У и Х.

В соответствии с числом учитываемых независимых переменных X_i и характером связи между У и X различают:

- а) по количеству исследуемых переменных
- парный корреляционно-регрессионный анализ;
- множественный корреляционно-регрессионный анализ;
- б) в зависимости от формы связи
- линейный корреляционно-регрессионный анализ;
- нелинейный корреляционно-регрессионный анализ;

Как известно, оценка вектора коэффициентов регрессионного анализа по МПК вычисляется по формуле:

$$b = (X^1 X)^{-1} X^1 Y$$
,

где X-матрица известных числовых данных наблюдаемых факторов; Y-вектор числовых значений целевой функции.

Дисперсии (диагональные элементы) и ковариация (внедиагональные элементы) оценок параметров вычисляются по соотношению

$$V(b) = (X^{1}X)^{-1}\sigma_{Y}^{2},$$

где σ_{Y}^{2} -дисперсия экспериментальных данных при измерении вектора Y.

Мерой эффективности регрессионной модели служит величина, которая называется коэффиентом детерминации и определяется выражением:

$$R^2 = \frac{\sum (y_n - M_Y)^2}{\sum (y_i - M_Y)^2}$$
, где

 y_n —значение целевой функции, вычисленное по уравнению регрессии.

Коэффициент детерминации показывает, какая часть общей вариации зависимой переменной определяется факторами, включёнными в анализ.

Для проверки гипотезы о равенстве вектора b нулю (в общем случае — об адекватности предлагаемой модели) используется F-критерий. Он вычисляется как частное от деления средних квадратов относительно модели на средние квадраты ошибок.

Если b_0 =0, критерий имеет F-распределение с числом степеней свободы (p-1) b и (n-p), где p- количество коэффициентов в уравнении регрессии, а n- количество экспериментальных точек. Когда же b отлично от нуля, критерий имеет тенденцию к возрастанию с ростом значений b_i (=0,1,2.... p-1).

<u>Пример 1.</u> По данным приведённым в примере 1 (занятие 2) построить линейную регрессионную модель.

Решение задачи начинается с создания исходной таблицы (таблица 1, занятие 32) на рабочем листе Excel, после чего в меню Сервис выбирается пункт Анализ данных, а в открывшемся списке функций выделяется курсором имя Регрессия. В открывшемся окне функции необходимо задать входной интервал ячеек с данными, для чего необходимо протащить указатель мыши с нажатой левой кнопкой по всем ячейкам исходной таблицы, исключая заголовки столбцов. Кроме того, необходимо указать, что данные группируются по столбцам и метки данных находятся в первой строке, для чего достаточно выделить в окне соответствующие надписи. После этого задаётся выходной интервал ячеек, для чего достаточно щёлкнуть левой кнопкой мыши по первой ячейке выходного диапазона, затем выполняется щелчок по кнопке ОК окна и на экране, в указанном месте, появляется таблица с результатами вычислений, приведённая ниже.

Как показывают результаты, регрессионная модель достаточно адекватна исследуемому процессу, т.к. коэффициент детерминации **R-квадрат** =0,9.

Линейная регрессионная модель процесса имеет следующий вид:

$$Y = 22,14 - 0,02 * x_2 - 1,15 * x_8 + 0,13 * x_{14} - 0,21 * x_{17} + 0,26 * x_{26}.$$

вывод итогов

Регрессионная ст	атистика
Множественный R	0,9468456
R-квадрат	0,8965166
Нормирован- ный R-квадрат	0,7240442
Стандартная ошибка	3,6016654
Наблюдения	9

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	5	337,1440198	67,428804	5,198029	0,102698128
Остаток	3	38,91598019	12,971993		

Итого 8 376,06	
----------------	--

	Коэффи- ииенты	Стандартная	t-статистика	Р- Значение	Нижние 95%	Верхние 95%
Ү-пересечение	22,138441	23,5852398	0,9386566	0,417153	-52,9203184	97,19720015
x2	-0,021294	0,058553288	-0,363665	0,740226	-0,20763646	0,165048925
x8	-1,154511	1,209420336	-0,954599	0,410205	-5,00342637	2,694404187
x14	0,1298196	0,12447052	1,0429746	0,373611	-0,26630116	0,525940332
x17	-0,206689	0,23331	-0,885898	0,440921	-0,94918535	0,535807747
x26	0,2600455	0,104778203	2,4818662	0,089123	-0,07340553	0,593496482

Необходимо отметить, что функция **Регрессия** даёт возможность вычислять коэффициенты для регрессионных моделей, в которых учитываются квадратичные зависимости и парные взаимодействия. Столбцы исходных данных для решения таких задач должны быть дополнены значениями x_i^2 и $x_i x_j$.

Задания для самостоятельного выполнения

Используя варианты занятия 3, постройте соответствующие данным вариантов линейные регрессионные модели сельскохозяйственного производства Брянской области за 1996-2007 годы.

Раздел 2 ДЕТЕРМИНИРОВАННОЕ МОДЕЛИРОВАНИЕ

Занятие 5. Аппроксимация зависимостей

Используемые в математических моделях функции или данные часто представлены в виде таблиц. В этом случае значения функции известны только для дискретных значений аргументов. Для того, чтобы вычислить ее значение в произвольной точке, исследуемую функцию заменяют более простой. Такое приближение называют аппрок-

симацией. В вычислительной математике она является основой для разработки многих методов и алгоритмов.

Пусть функция f(x) задана таблицей значений, полученных из наблюдений:

x	x_0	x_1	•••	x_n
f(x)	f_{θ}	f_1	•••	f_n

Введем аппроксимирующую функцию $f'(x,c_0,c_1...c_n)$ так, чтобы она совпадала с табличными значениями в точках x_i :

$$f'(x,c_0,c_1...c_n) = f_i \quad 0 < i < n \quad (2.1.1)$$

Свободные параметры c_i определяются из системы (2.1). Такой способ называется лагранжевой интерполяцией, а условия (2.1) - условиями Лагранжа. Обычно в качестве аппроксимирующей функции выбирают полином некоторой степени x. Отметим, что кривая, описываемая полиномом степени n, всегда строго пройдет через все n точек. Однако на практике при большом числе пар значений такая аппроксимация часто бывает бессмысленной или требует неоправданных затрат ресурсов.

Другой способ интерполяции - использование элементарных функций. Коэффициенты этих функций подбираются, как правило, методом наименьших квадратов, т.е. из условия минимальной суммы квадратов отклонений между вычисленными и табличными значениями функции.

Часто используют также интерполяцию сплайнами (от английского слова spline - линейка). Известно, что для проведения гладких кривых чертежники используют гибкую металлическую линейку, совмещая ее с некоторыми узловыми точками. Математическая теория такого метода называется теорией сплайн-функций. В отличие от интерполяции полиномом, которым описывается вся область данных, при интерполяции сплайнами строится отдельный

полином, описывающий интервал x_{i-1} , x_i . Так, если выбран полином третьей степени, его называют кубическим сплайном и записывают в виде:

$$f_i(x) = a_i + b_i(x-x_{i-1}) + c_i(x-x_{i-1})^2 + d_i(x-x_{i-1})^3$$

где a, b, c и d - коэффициенты сплайна, которые вычисляются из условий "сшивания" соседних сплайнов в узловых точках.

При исследовании природных процессов вначале следует сделать вывод о том, каким образом подбирать аппроксимирующую зависимость - строго учитывая все точки наблюдений, или используя какие-либо критерии для того, чтобы отклонения от экспериментальных точек были минимальными. Во втором случае обычно приходится соответствующим образом готовить данные, сглаживая их, отбраковывая заведомо недостоверные и т.п. Примерами первого типа могут быть высокоточные физические измерения, например, плотности пресной воды при разных температурах. Нужно понимать, что такой подход интересен, скорее, с теоретической точки зрения. С его помощью, например, можно упростить задачу составления таблиц логарифмов. В науках о Земле данные; - например, измерения солености морской воды по глубине, температур воздуха или уровней воды в реке, нужно подготовить для дальнейшего исследования. Поэтому второй вариант более типичен при исследовании природных процессов.

Важным исключением из этого правила является построение карт в изолиниях. Для этой цели разработано большое количество программ. В частности, это можно сделать и средствами MS Excel. Здесь требуется провести гладкую кривую, проходящую через все точки с известным значением функции (рельефа, концентрации, напора и т.д.). Как правило, для построения таких кривых используется интерполяция сплайнами.

Интерполирование оказывается наиболее простым в случае, когда интервалы между значениями аргумента остаются постоянными. Например, легко приближенно оценить степень интерполирующего полинома, вычисляя последовательно разности первого, второго и т.д. порядков. Так, определим порядок полинома, которым описывается зависимость плотности воды от температуры. Измерения приведены в таблице:

температура, °С	20	21	22	23	24	25
плотность, г/см ³	0.998230	0.998019	0.997797	0.997565	0.997323	0.997071

Составим таблицу разностей:

температура, ⁰ С	плотность, $\Gamma/\text{см}^3$	первая разность	вторая разность	третья разность
20	0.998230			
21	8019	-0,000211		
22	7797	222	-0,000011	
23	7565	232	10	-0,000001
24	7323	242	10	0
25°	7071	252	10	0

Разность второго порядка практически постоянна, следовательно, для описания данной зависимости следует использовать полином второго порядка.

Задание 1. При калибровании динамометра определяли величину нагрузок, которые необходимы для того, чтобы показания равнялись 5,10,15 и т.д. В таблице приведены показания динамометра N и нагрузка P в килограммах:

N	0	5	10	15	20	25	30	35	40

P	0	4.87	10.52	17.24	25.34	35.16	46.97	61.09	77.85

Используя таблицы MS Excel, определите, какой степени полином нужно использовать для описания зависимости P от N.

Подсказка к выполнению: Если, например, нагрузка будет размещена в столбце В, и цифра 4,87 попадет в строку 3, а 10,52 - в строку 4, то в ячейке С4 следует написать формулу "=В4-В3". В ячейке С4 запишется первая разность. Выделите ячейку С4 и, установив курсор мыши на темный квадрат в нижнем правом углу выделения (при этом указатель мыши станет черным крестиком), растяните область выделения вправо на 4-5 позиций. Затем отпустите левую кнопку и, вновь установив курсор мыши на темный квадрат в нижнем правом углу выделения, расширьте его вниз.

<u>Задание 2.</u> При наблюдении за скоростью испарения рапы с поверхности озера Эльтон получены следующие (усредненные) данные:

Соленость рапы, %	20	24	26	28	30	33	36
Скорость испарения % от пресной воды	71	62	54	42	35	22	9

Установите вид зависимости и подберите ее коэффициенты, используя лист "Approximation" файла 2_1.xls.

 $\underline{\textit{Подсказка к выполнению}}$: Для того, чтобы установить вид зависимости, обычно последовательно строят графики самой зависимости, степенной (например, $y=ax^b$), гиперболической, логарифмической, экспоненциальной и т.д.). Увидев, что какой-либо из графиков представляет собой прямую линию, легко получить нужную зависимость, используя простую подстановку. Диаграммы MS Excel позволяют подо-

брать такую зависимость (щелчок правой кнопкой на графике, линия тренда). В нашем случае можно также воспользоваться кнопками выбранной функции на листе "Арргохітатіоп". Перед этим введите <u>парные</u> значения y, x в столбцы B и C и выделите их мышкой. После нажатия на кнопку в столбце D запишутся вычисленные значения y, а в столбце F - значения коэффициентов уравнения.

Важно ! При подборе зависимостей следует очень осторожно использовать программы автоматического или полуавтоматического их подбора. Следует обязательно просматривать результаты на графиках. Это позволит увидеть действительное соответствие вида зависимости, присутствие "сомнительных" точек, другие несуразности.

<u>Задание 3.</u> Выполните аналогичное задание для зависимости давления водяного пара (мм.рт.ст.) над насыщенным раствором Na_2SO_4 в зависимости от температуры:

температура, °С	16	20	24	28	30	35	39
давление, мм.рт.ст.	11,6	14,7	18,9	23,8	27,2	36,0	44,6

Занятие 6. Численные методы решения уравнений

Во многих экологических задачах математическая модель процесса может быть сведена к уравнению вида:

$$f(x,p_1,p_2,...,p_n) = 0$$

где f - заданная функция, х- неизвестная величина, $p_1p_2....,p_n$ - параметры задачи. Обычно требуется исследовать поведение решений вследствие изменения параметров уравнения.

Только для простейших уравнений удается найти решение в аналитическом виде, то есть записать формулу, выражающую искомую величину в явном виде через известные параметры. Чаще приходится использовать при-

ближенные, или иначе, численные методы решения.

Деление отрезка пополам

Начнем рассмотрение этих методов на простом примере - поиске корня уравнения y=sin(x). Введите в клетку А1 цифру 1, в клетку В1 цифру 2, а в клетки А2 и В2 формулы "=sin(A1)" и "=sin(A2)". Выделите ячейки A1:B2, и установив курсор мыши на темный квадрат в нижнем правом углу выделения, растяните область выделения вправо так, чтобы в строке 1 появились числа 5 - 6 или немного больше. Эти числа в данном случае показывают угол в радианах, который используется функцией sin в строке 2 в качестве аргумента. Мы видим, что для аргумента = 3 значение функции составляет 0,14112, а для 4 - (-0,75680). Попробуем найти значение х, при котором функция обращается в ноль, в этом интервале, используя метод половинного деления. Алгоритм этого метода прост. Сначала вычисляется полусумма х' двух значений аргументов x_1 и x_2 (в нашем случае (3+4)/2) и значение функции для этого нового аргумента. Если вычисленное значение функции меньше нуля, значит, мы спустились ниже оси абсцисс и нужно присвоить x_2 значение, равное x' а x_1 оставить без изменения. Если функция больше нуля, нужно поступить наоборот. Используя MS Excel, вычисления можно организовать, например, следущим образом. Запишем в клетку С4 значение, равное C1, а в D4- равное D1. В E4 введем формулу "=(D4+C4)/2" а в F4 вычислим sin(E4). В C5 введем формулу "=ECЛИ(F4<0;C4;E4)" a В "=EСЛИ(F4<0;E4;D4)". Используя черный крестик, "размножим" написанную формулу вниз на десяток строк.

<u>Задание 1.</u> Сколько понадобилось последовательных делений отрезка пополам, чтобы получить корень уравнения? Найдите значение корня уравнения у=cos(x) в интервале от 7 до 8 методом половинного деления.

Метод Ньютона

Одним из распространенных итеративных методов определения корней уравнений является метод Ньютона. При условии, что задано начальное приближенное значение корня x_i

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$
 (2.)

Геометрическая интерпретация метода понятна из рис.1.

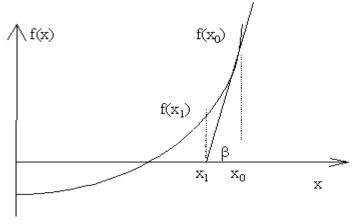


Рисунок 1

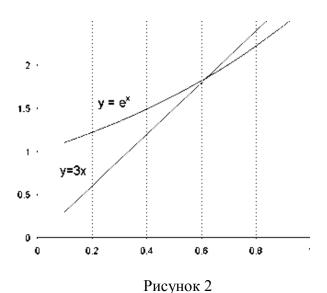
Формулу 2. можно получить также с помощью разложения f(x) в ряд Тейлора вблизи корня. Пусть $x_{i+1}=x_i+k$, тогда

$$f(x_{i+1}) = f(x_i) + k \ f'(x_i) \ \mathsf{и}$$
 $k = f(x_i)/k \ f'(x_i)$ так как $f(x_{i+1})$ стремится к нулю.

До сих пор мы обходили вопрос о поиске начального приближения. Понятно, что на практике без него не обойтись. Но обычно его ставят несколько иначе - найти интер-

вал, внутри которого x обращается в ноль. Называют эту операцию отделением корней и осуществляют, используя внешние соображения, например, методом подбора или графически. Так, на рис. 2.2.2 принцип отделения корня показан на примере уравнения

$$y = e^x - 3x$$
.



Видно, что корень находится в интервале 0,4 и 0,9. Используя 0,9, как начальное приближение и учитывая, что $f'(x) = e^x - 3$, вычислим f(x) = -0.24, f'(x) = -0.54 и по формуле 2.2.2. $x_{i+1} = 0.455$. Далее последовательно найдем:

\boldsymbol{x}	f(x)	f'(x)
0.455	0.21	-1.42

0.603	0.019	-1.17
0.614	0.0058	-1.15
0.619	0.00001	

Таким образом, четырех итераций оказалось вполне достаточно. Метод Ньютона имеет более высокую скорость сходимости, чем метод половинного деления. Единственным его недостатком является необходимость вычислять производную функции на каждом шаге. Иногда это делают один раз, а затем вычисляют только значения функции. Называют такую процедуру модифицированным методом Ньютона.

Можно определять значения производной численно. Так, для приведенного выше примера на первом шаге вычислений f'(x) = (-0.240-0.292)/(0.9-0.4) = -1.064

<u>Задание 2.</u> Повторите решение уравнения $y = e^x - 3x$ методом Ньютона, определяя производную аналитически и численно. Сравните результаты.

Задание 3. Решите уравнение из задания 1 методом Ньютона для того-же интервала. Сравните необходимое число итераций.

Метод простых итераций

Рассмотрим другой относительно простой примеррешение уравнения, описывающего зависимость длины волны от глубины воды на мелководье. Оно имеет следующий вид: l=Lth(2ph/l) (3.) где l - длина волны на мелководье, L - длина волны на большой глубине, th - гиперболический тангенс, th - глубина воды. Такие уравнения называются трансцендентными. В отличие от примеров, которые мы рассматривали выше, аналитическое решение этого уравнения вообще невозможно. Однако оно легко решается одним из численных методов - методом итера-

ций. Возьмем произвольное значение l, которое обозначим l_0 , подставим его в правую часть уравнения и вычислим значение l_I , т.е. $l_I = L \, th(2p \, h/l_0)$.

После этого вычислим значение l_2 по формуле l_2 =L $th(2p\ h/\ l_1)$.

Теоретически путем повторения этого процесса можно достигнуть любой точности, проведя достаточное количество итераций. Практически она ограничивается погрешностями округления.

Пусть, например, $\boldsymbol{L}=10$ м, $\boldsymbol{h}=0.5$ м. Примем $\boldsymbol{l}_{\theta}=\boldsymbol{L}$ в качестве начального приближения. Результаты вычислений li приведены в таблице:

Таблица 2					
Итерация	l_i	Итерация	l_i	Итерация	l_i
1	3.0421619	11	5.0494950	28	5.3163677
2	7.7498265	12	5.5262999	29	5.3056299
3	3.8453934	20	5.3460951	30	5.3142174
4	6.7342040	21	5.2819794	31	5.3073477
5	4.3537745	22	5.3332159	32	5.3128420
10	5.6510840	27	5.3029458	33	5.3084469

После 30-й итерации результаты вычислений отличаются менее, чем на 1 см, то есть достигнута точность, вполне достаточная для практических целей.

Разность значений, полученных на двух последующих итерациях, называется итерационной ошибкой. Когда она уменьшается, как в нашем примере, говорят о *сходимости* расчетного метода. Добиться этого удается не всегда - в этом случае говорят, что расчетная схема расходит-

ся. Тогда надо менять параметры математической модели или использовать другой численный метод. Чтобы и в этом случае компьютер также мог закончить вычисления, как правило, ограничивают число итераций.

Отметим, что иногда даже если возможно решить задачу аналитически, численные методы оказываются более эффективными.

Задание 4. Откройте файл 2_2.xls. Его страница "Wave", демонстрирует возможный вариант решения задачи о длине волны. Зеленые поля - это параметры задачи, которые можно изменять (h и L). В строке 5 вычисляется номер текущей итерации по простому правилу: № текущей итерации = № предыдущей итерации + 1

В строке 7 осуществляется последовательный расчет длины волны l_i . В столбце A строки записано начальное приближение. Вопрос о том, как его определить, является предметом отдельного исследования, и часто от этого серьезно зависит скорость решения задачи. В нашем случае наиболее просто и естественно использовать в качестве начального приближения L.

Установите параметры задачи, рассмотренной выше и проверьте соответствие решения приведенному в таблице 2.

Задание 5. Исследование скорости сходимости в зависимости от начального приближения. Его можно устанавливать в клетке A7. Например, в нашем случае (L=10 и h=0.5) можно использовать начальные приближения 1, 5, 10 и 15. Постройте график зависимости количества итераций, которые потребовались для достижения точности в 1см, от относительной ошибки начального приближения. Сформулируйте вывод из проделанной работы.

Задание 6. Его можно выполнять на листе рабочей книги 2_2.xls, или в новом файле. Задача состоит в том, чтобы исследовать зависимость длины волны от глубины волны на мелководье. Совершенно необязательно вычис-

лять каждое следующее приближение в другом столбце. Можно просто написать в какой-либо ячейке, например, A3, формулу "= $$A$1*TANH(2*\pi u()*A2/A3)$ ". При этом в ячейках A1 и A2 должны быть записаны L и h. Если компьютер возразит, что не может разрешить циклические ссылки (т.е. ссылку на ту же ячейку A3), следует сходить в меню Сервис - Параметры и на вкладке Вычисления установить флажок Итерации, их максимальное число (100 - 1000), критерий точности, в нашем случае 1 см (0.01) и нажать кнопку OK.

Так как изначально в ячейку А3 ничего не вводилось, со стороны компьютера возможна также реплика "дел/0" (деление на ноль), которое происходит в результате первой же итерации. Избежать этого легко. В знаменатель дроби вместо А3 следует вписать (А3+0.00001). На точности наших расчетов это практически не отразится, а для компьютера знаменатель перестанет быть равным нулю.

Убедитесь, что ячейка A3 все еще текущая, (вокруг нее есть черная рамка) и подведите указатель мыши к ее нижнему правому углу. Указатель примет форму +. Удерживая нажатой левую кнопку, растяните рамку за угол так, чтобы покрыть некоторый диапазон ячеек строки 3. Отпустите кнопку. Во все ячейки диапазона будет скопирована формула, при этом произойдет автоматическая коррекция адресов A2 и A3.

Адрес A1 не изменится, так как и строка и столбец зафиксированы символом \$. Отметим, что в нашем случае можно было бы ограничится записью \$A1, потому что мы изменяем формулу только вдоль строки.

Теперь надо задать независимый параметр, т.е. h. Предположим, следует менять h с шагом 0.2м. Запишем в ячейку A1 0.2 а в A2 - 0.4. Выделим ячейки A1 и A2 и повторим операцию копирования, изложенную чуть выше, для строки 2. Теперь мы имеем все необходимое для по-

строения графика исследуемой зависимости - в строке 2 независимая переменная h (глубина воды) и в строке 3 - результат вычислений, l (длина волны).

Выделим интервалы, необходимые для построения графика. В случае необходимости можно воспользоваться справкой MS Excel - меню ? , поиск справки. Нажмем кнопку Диаграмма на панели инструментов Стандартная, установим курсор в верхний левый угол будущей диаграммы, нажмем левую кнопку мыши, установим курсор в нижний правый угол диаграммы и отпустим кнопку. Мастер Диаграмм начнет последовательно выполнять построение графика.

Вначале нужно проверить правильность выделения интервала. Затем выбрать тип диаграммы XY-точечная (тип график предполагает использование в качестве независимой переменной натурального ряда чисел). Формат следует выбрать не сглаженный, т.е. такой, на котором видны точки. Проверьте, что данные располагаются в строках, для х отведена 1 строка и легенда не предусмотрена. Она нам не нужна, т.к. на графике будет всего 1 линия. Введите название диаграммы и подписи по координатным осям.

Посмотрите, как быстро уменьшается длина волны, а следовательно, возрастает высота гребня при уменьшении глубины. Вспомните, к каким катастрофическим последствиям приводят цунами.

Попробуйте изменить формат диаграммы (двойной щелчок по области построения), вызвать меню нажатием на правую кнопку мыши. Изучите возможности меню (правая кнопка мыши).

Задание 7. Посмотрите на график, отображающий поиск корня уравнения длины волны. Нельзя сказать, что процесс идет быстро. Так, 25-я итерация еще далеко не дает окончательного результата. Как можно ускорить итера-

ционный процесс, используя навыки, полученные нами при изучении метода половинного деления?

Раздел 3 МЕТОДЫ ОПТИМИЗАЦИИ

Занятие 7. Метод Лагранжа

Оптимизация играет важную роль при экологических исследованиях и поиске наилучших характеристик объекта или наименьших затрат ресурсов.

Оптимизации подвергается целевая функция, которая в этом случае выражается через какие-либо параметры или факторы, при некоторых заданных ограничениях. В общем случае задача оптимизации формулируется следующим образом: найти значения параметров $x_1, x_2, \dots x_n$, при которых целевая функция

$$Y=f(x_1, x_2, ...x_n)$$

принимает максимальное (минимальное) значение при *функциональных* ограничениях, выражаемых в виде равенств

$$\begin{split} F_1 = & f_1 \left(x_1, \, x_2, \, \dots x_n \right) \\ F_2 = & f_2 \left(x_1, \, x_2, \, \dots x_n \right) \\ \dots \\ F_m = & f_m \left(x_1, \, x_2, \, \dots x_n \right) \end{split}$$

и область ограничений в виде неравенств

Для решения таких задач могут быть использованы методы: *дифференцирования*, *множителей Лагранжа*, *численные методы*, *математическое программирование* и др.

При оптимизации методом дифференцирования оптимум находится приравниванием частных производных целевой функции

$$\frac{\delta y}{\delta x_1} = 0;$$

$$\frac{\delta y}{\delta x_2} = 0;$$

$$\frac{\delta y}{\delta x_n} = 0$$

и затем из решений совместной системы n-уравнений находится значение всех переменных x_i

$$i = \overline{1,n}$$

<u>Задание 1.</u> Интерполяция по Лагранжу. Откройте лист Lagrange файла 2_1 .htm. Интерполяция по Лагранжу проводится при четырех произвольно расположенных узлах. Значения известных пар y(x) записываются в строки 3

и 5. Значение х, при котором требуется получить у путем интерполяции, записывается в ячейку Н3, интерполяционная формула записана в ячейках Н5:Н9. Определите значения функций $y=x^2$, $y=x^3$, y=1/x, $y=1/x^2$ и y=exp(x) при х=3, используя значения у при х = 1, 2, 4, 5. Оцените относительную ошибку интерполяции и сделайте выводы о точности метода и его применимости в данном случае.

Раздел 4 РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Методы математического программирования составляют раздел математики, в котором изучаются методы нахождения минимума или максимума функции конечного числа переменных при условии, что переменные удовлетворяют конечному числу дополнительных условий (ограничений), имеющих вид уравнений или неравенств. Различают линейное и нелинейное математическое программирование.

Линейным программированием называется раздел математики, в котором изучаются методы нахождения минимума или максимума линейной функции конечного числа переменных при условии, что переменные удовлетворяют конечному числу дополнительных ограничений, имеющих вид линейных уравнений или неравенств. Таким образом, задача линейного программирования (ЗЛП) в общем случае формулируются следующим образом: найти такие значения действительных переменных $x_1, x_2, \dots x_m$, для которых целевая функция

$$Q(x) = p_1 x_1 + p_2 x_2 + \dots p_n x_n$$

Принимает минимальное значение на множестве точек, координаты которых удовлетворяют условиям

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_mx_1 + a_mx_2 + \dots + a_{mn}x_n = b_m$$

$$x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0,$$

Требуется найти такое неотрицательное решение системы, которое обращает линейную форму в максимум или минимум.

В математической модели задачи линейного программирования выделяются три составные части: - целевая функция; - система ограничений; - условия неотрицательности неизвестных.

Неотрицательное решение системы, обращающее линейную форму в максимум (минимум) называется *оптимальным решением*.

Запись системы ограничений в матричной форме может быть представлена в виде

$$A*X=B$$

Здесь А-матрица коэффициентов при неизвестных, X-вектор неизвестных, B-вектор правых частей. Целевая функция в матричной форме вычисляется по формуле

$$Z=C*X$$

Здесь С-строка коэффициентов при неизвестных.

Нахождение оптимального решения задачи линейного программирования с помощью табличного процессора Excel рассмотрим на следующем примере

Задача 1. в хозяйстве возделываются овёс, озимая пшеница и картофель. Площадь пашни, отведенная под эти культуры, равна 700 га. Посевная площадь под пшеницу не

должна превышать 160 га, под картофель – не более 200 га. Производство культур характеризуется показателями, приведёнными в таблице 1.

Таблина 1

Показатели	Овёс	Озимая пшеница	Картофель
Урожайность, ц/га	20	25	150
Цена реализации, руб.	40	80	35

Требуется найти такое сочетание посевных площадей указанных культур, при котором прибыль от реализации продукции будет максимальной.

Принимаются следующие обозначения неизвестных: X1 - посевная площадь, занятая овсом; X2 - площадь под озимой пшеницей; X3 - площадь под картофелем (в гектарах).

Математическая модель задачи выглядит следующим образом:

```
Z=20*40*X1+25*80*X2+150*35*X3 \rightarrow max; X1+X2+X3=700-ограничение 1; 0+X2+0\le 160-ограничение 2; 0+0+X3\le 200-ограничение 3; X1\ge 0, X2\ge 0, X3\ge 0-условия неотрицательности.
```

Решение задачи начинается с создания исходной таблицы 2, приведённой ниже. В первую строку для коэффициентов при неизвестных заносятся значения, которые используются при вычислении целевой функции, в данном примере это c_1 =20*40=800, c_2 =25*80=200, c_3 =150*35=5250. В следующие три строки заносятся коэффициенты, записанные в ограничениях.

В столбец для значений неизвестных заносятся их начальные значения, равные 1.

В верхнюю ячейку столбца «Величины ограничений» записывается формула (в матричной форме) для вычисления целевой функции=МУМНОЖ (A4:C4; D4:D6)».

После этого выделяются следующие три ячейки этого столбца и в них записывается формула для вычисления вектора правых частей ограничений «{=МУМНОЖ (A5:C7; D4:D6}». После ввода этой формулы, для задания её действия на выделенный массив ячеек, необходимо одновременно нажать комбинацию клавишей Ctll+Shift+enter, предварительно установив мигающий курсор в строке формул перед знаком равенства.

Таблица 2

	эффици неизвес		Значения неизвестных	Величины ограничений	Пояснения
X1	X2	Х3	X1-X3	0194111114	
800	2000	5250		8050	Целевая функция
1	1	1	1		Ограничение 1
0	1	0	1		Ограничение 2
0	0	1	1		Ограничение 3

После формирования таблицы 2, курсор устанавливается в ячейке с формулой для вычисления целевой функции, затем в меню **Сервис** выбирается команда **Поиск решения**, после чего открывается окно подпрограммы оптимизации. В этом окне необходимо указать следующие параметры:

- 1) адрес ячейки с целевой функцией;
- 2) вычисления максимума для целевой функции;
- 3) изменяемые ячейки (содержащие значения неизвестных X1-X3);
- 4) в разделе «Ограничения» задать условия неотрицательности неизвестных и указать численные значения всех ограничений.

Щёлкнув левой кнопкой мыши по кнопке **Выполнить** в окне подпрограммы, получаем таблицу 3 с результатами поиска оптимального решения.

Таблица 3

		ффициенты Значения неизвестных		Величины ограничений	Пояснения
X1	X2	X3		orpunit renim	
800	2000	5250		1642000	Целевая функция
1	1	1	340	700	Ограничение 1
0	1	0	160	160	Ограничение 2
0	0	1	200	200	Ограничение 3

Задача 2. Имеется два вида ресурсов: древесина берёзы и древесина ольхи в количестве 8 м³ и 24 м³ соответственно. Из этих ресурсов изготавливается два вида бумаги. На единицу изделия первого вида расходуются ресурсы в количестве два и четыре, а второго вида — один и шесть. Цена бумаги первого вида четыре, а второго — пять тыс. руб.

Ставится задача, в каких количествах следует изготавливать бумагу двух видов, чтобы обеспечить максимальный доход?

Подсказка к выполнению: Построим математическую модель задачи. Обозначим через X_1 и X_2 числа производимых изделий первого и второго видов, тогда $2x_1+x_2$ – расход ресурса первого вида; $4x_1+6x_2$ – расход ресурса второго вида; $4x_1+5x_2$ – доход от реализации продукции. Математическая модель выглядит следующим образом: $Z=4x_1+5x_2$ — max;

при ограничениях:
$$2x_1+x_2 \le 8$$
; $4x_1+6x_2 \le 24$; $x_1 > 0$; $x_2 > 0$

Задача 3. Дана целевая функция $Z=-3x_1+x_2+3x_3$ min, при ограничениях $2x_1+x_2+x_3 \le 5;$ $-x_1+3x_2-x_3 \le 4;$ $x_1+2x_2+x_3 \le 8;$ $x_1 \ge 0; x_2 \ge 0; x_3 \ge 0.$

Занятие 8. Решение транспортных задач

Транспортная задача также относится к классу задач линейного программирования, но она имеет некоторые особенности, в связи с чем и методика её решения несколько отличается от приведённой в предыдущем разделе. Общая постановка транспортной задачи такова.

Имеются m пунктов отправления $A_1,\ A_2,\ \dots A_m,\$ на которых сосредоточено определённое количество однородного продукта $a_1,\ a_2,\ \dots a_m.$ Имеются n пунктов потребления $B1,\ B_2,\ \dots B_n,$ потребность которых в этом продукте $B_1,\ B_2,\ \dots B_n.$ Если выполняется равенство $a_1+\ a_2+\dots a_m=\ B_1+B_2+\dots B_n,$ то такая модель называется закрытой, а если нет — то открытой.

Из каждого пункта отправления возможна транспортировка продукта в любой пункт потребления, причём стоимость перевозок единицы груза из і-го пункта отправления в j-пункт потребления известна.

Требуется составить такой план перевозок, при котором общие транспортные расходы были бы минимальными. При этом весь продукт из пунктов отправления должен быть вывезен, а потребности каждого потребителя удовлетворены полностью.

За неизвестные здесь принимаются перевозимые объёмы груза. Через x_{ij} обозначается количество продукта, отправляемого из из і-го пункта отправления в ј-пункт назначения. Для закрытой транспортной задачи все условия запишутся следующим образом:

$$x_{1n}+x_{2n}+...x_{mn}=b_n;$$

Требуется найти такое неотрицательное решение системы уравнений, при котором линейная форма достигает минимума:

$$Z_{min} = c_{11}x_{11} + c_{12}x_{12} + c_{1n}x_{1n} + c_{21}x_{21} + \dots + c_{m1}x_{m1} + \dots + c_{mn}x_{mn}.$$

Задача 1. С двух полей хозяйства требуется перевезти собранный картофель в три хранилища. На 1-м поле собрано 1800 т картофеля, на 2-м - 2600 т. В первое хранилище необходимо перевезти 1000 т, во второе — 1200 т, а в 3-е 2200 т. расстояние от полей до хранилищ в км приведены в таблице 1. Требуется составить такой план перевозок, при котором урожай будет доставлен в хранилища при минимальном пробеге транспорта в км.

Решение задачи начинается с создания в Excel таблицы 1, в которую заносятся исходные данные для задачи. После этого необходимо создать таблицу 2, в которой будут вычисляться результаты решения. В ячейки этой таблицы вносятся начальные значения неизвестных переменных, равные 1.

Таблица 1 Исходные данные

Поля		200000		
Поля	1	2	3	Запасы
1	20	20	30	1800
2	30	40	20	2600
Потребности	1000	1200	2200	

В ячейки столбца «Запасы» записываются формулы суммирования переменных по строкам, а в ячейки строки «Потребности» - формулы суммирования переменных по столбцам. В последнюю ячейку строки «Целевая функция» вводится формула « СУММПРОИЗВ (В5 :D6; В12: D13)», которая позволяет вычислить эту функцию как сумму про-

изведений элементов двух массивов – таблицы расстояний и таблицы неизвестных.

Таблица 2

Поля		Хранилища	ı	Запасы		
RIGHT	1	2	3	Запасы		
1	1	1	1	3		
2	1	1	1	3		
Потребности	2	2	2			
Целевая функция				160		

После этого в меню Сервис выделяется щелчком мыши команда Поиск решения и на экране появляется окно подпрограммы, в котором необходимо указать адрес ячейки с целевой функцией (Е14), диапазон ячеек с изменяемыми параметрами (В12:D13), задать поиск минимума целевой функции, ограничения по запасам и потребностям, а также условие неотрицательности переменных. Щёлкнув левой кнопкой мыши по кнопке Выполнить в окне подпрограммы, получаем таблицу 3 с результатами поиска оптимального решения.

Таблица 3

Поля		Запасы		
KILOIT	1	2	3	Запасы
1	600	1200	0	1800
2	400	0	2200	2600
Потребности	1000	1200	2200	
Целевая функция				92000

Задача 2. В хозяйстве имеются 3 поля, отведённые под сенокосы. На 1-м заготовлено 50 т сена, на 2-м – 25 т, на 3-м – 40 т. В хозяйстве есть 2 фермы КРС. Первой на стойловый период требуется 75 т сена, а второй – 40 т. Требуется составить такой план перевозок сена на фермы КРС, при котором оно будет доставлено при минимальном пробеге автотранспорта (ткм). Расстояния в км от сенокосов до ферм КРС приведено в таблице 4.

Таблица 4 Исходные данные

Сенокосы	Фермы КРС			
	1 2			
1	15	25		
2	40	30		
3	17	10		

Задача 3. В районом центре строятся школа, дет. сад и столовая. Для строительства школы требуется 200 т песка, дет.сада — 250 т, столовой — 150т, который можно привести из 2-х карьеров. Запасы 1-го составляют 500 т, 2-го — 100 т. Требуется составить такой план перевозки, при котором строительный материал будет доставлен к строительным объектам при минимальном пробеге автотранспорта, ткм. Расстояния в км от песчаных карьеров до строительных объектов приведено в таблице 5.

Таблица 5

Песчаные	Строи	Запасы		
карьеры	Школа	Дет. сад	Столовая	Запасы
1	20	17	7	500
2	5	3	15	100
Потребности	200	250	150	

<u>Задача 4.</u> Требуется составить такой план перевозок, при котором содержимое из пунктов отправления будет доставлено в пункты назначения при минимальном пробеге автотранспорта (ткм), учитывая расстояние от пунктов отправления до пунктов назначения (табл. 6).

Таблица 6

Пункты	Пун	Пункты назначения, км				
отправления	1	2	3	запасы, т		

1	100	240	70	700
2	150	270	80	1100
3	190	280	210	2200
4	170	300	300	4800
5	200	400	315	1010
Потребности, т	5000	2000	2810	

Занятие 9<u>. Решение задач оптимального финансирования объектов</u>

При оптимальном финансировании некоторого количества объектов в течение некоторых периодов времени для каждого объекта и каждого периода задаются не конкретные значения, а верхние и нижние граничные условия, т.е. пределы, в которых должны находиться рассматриваемые величины. В этих граничных условиях и производится финансирование с целью максимализации эффективности его использования, которая определяется по целевой функции.

Оптимальное распределение финансирования проводится на основе математической модели, составление которой начнём с таблицы 1.

Таблица 1

Объекты		Росуротт			
ООВСКІВІ			j	 n	Ресурсы
1	X_{11}	•••	X_{1j}	 X_{1n}	B_1
I	X_{i}		X_1	 X_{1n}	B_i
m	X_{mi}		X _{mi}	 X _{mn}	B_{m}
	D_1		D_{j}	 D _n	

Здесь і-номер объекта финансирования; ј-номер периода финансирования; X_{1j} —объё финансирования і-го

объекта в j-ом периоде; B_1 -величина ресурсов для i-го объекта; D_i -величина ресурсов в j-ом периоде.

Целевая функция этой задачи должна иметь вид

$$Z = \sum_{i=1}^{n} \sum_{i=1}^{m} C_{y} X_{y} \rightarrow \max.$$

Здесь С-коэффициенты, задаваемые в таблице 2.

Таблица 2

Объекты		Воливата			
Объекты			j	 n	Ресурсы
1	C_{11}		C_{1j}	 C_{1n}	\mathbf{B}_1
m	C_{mi}	•••	C_{mi}	 C_{mn}	B_{m}
	D_1	•••	Di	 D_n	

С помощью коэффициентов С устанавливаются приоритет финансирования і-го объекта в ј-ом периоде. В этом случае, чем важнее финансирование, тем выше значение С, оцениваемое в баллах (например в интервале от 1 до 10).

Математическая модель задачи включает, помимо целевой функции, ограничения на ресурсы и потребности, а также граничные условия для искомых параметров X_{1j} .

Ограничения для і-го периода записывается в виде

$$\sum_{i=1}^{n} X_{ij} \leq B_{1}$$

Ограничения для ј-го периода записывается в виде

$$\sum_{i=1}^{m} X_{ij} \leq D_1$$

В качестве граничных условий в данной задаче необходимо указать конкретные значения минимально допустимых величин финансирования объектов в данный период времени. Полученная математическая модель соответствует транспортной задаче, порядок решения которой был рассмотрен ранее.

Задача 1. Требуется обеспечить оптимальное распределение финансирования 5-ти объектов в течение 3-х месяцев. Ресурсы финансирования по каждой декаде, ежемесячное распределение финансирования для всех объектов в руб. и коэффициенты приоритетности для вычисления целевой функции приведены в таблице 1. Граничные условия, задающие минимальные объёмы финансирования объектов, приведены в таблице 2.

Таблица 1 Исходные данные

Ofg overv		Месяць	Росумот	
Объекты	1 2 3		3	Ресурсы
1	1	5	9	500
2	5	4	7	1200
3	6	2	10	3600
4	3	8	9	4800
5	5	6	8	10100
Потребности	5250	12950	2000	

Таблица 2 Граничные условия

Of army	Месяцы						
Объекты	1	2	3				
1	140	150	40				
2	120	200	300				
3	150	50	100				
4	170	100	200				

5	120	150	50
5	120	150	50

Задача 2. Требуется обеспечить оптимальное распределение финансирования 5-ти объектов в течение 3-х месяцев. Ресурсы финансирования по каждой декаде, ежемесячное распределение финансирования для всех объектов в руб. и коэффициенты приоритетности для вычисления целевой функции приведены в таблице 1. Граничные условия, задающие минимальные объёмы финансирования объектов, приведены в таблице 2.

Таблица 1 Исходные данные

Объекты		Decymera			
Объекты	1 2		3	Ресурсы	
1	1	5	9	500	
2	5	4	7	1200	
3	6	2	10	3600	
4	3	8	9	4800	
5	5	6	8	10100	
Потребности	5250	12950	2000		

Таблица 2 Граничные условия

Объекты	Месяцы					
Объекты	1	2	3			
1	140	150	40			
2	120	200	300			
3	150	50	100			
4	170	100	200			
5	120	150	50			

Занятие 10. <u>Решение задач оптимального использования ресурсов</u>

На практике часто требуется решать задачи оптимального распределения ресурсов. В MS Excel имеются специальные возможности для решения подобных задач. Рассмотрим возможности MS Excel на примере задачи распределения водных ресурсов. Пусть имеется три источника ресурса (месторождения) и три потребителя ресурса (поселки, предприятия и т.п.). Пусть утвержденные запасы месторождений составляют 700, 100 и 250 м³/сутки, а запросы составляют 200, 300 и 350 соответственно. В строке 2 таблицы приведены цены на доставку 1 м³/сутки от 1 и остальных месторождений к 1, 2 и 3 пользователям. В строке 4 размещены соответствующие объемы воды, в ячейке К4 - целевая функция, которая в данном случае представляет собой сумму произведений соответствующих ячеек строк 2 и 4. Наша задача состоит в том, чтобы найти такой план распределения воды, при котором суммарные затраты будут наименьшими. Ограничения по запасам установим в ячейки С6 - С8. Так, для первого месторождения (C6) это будет сумма значений B4, C4 и D4. Подобным образом установим и ограничения по запросам в ячейки Ј6 - 18. В таблице приведен вариант решения названной задачи. Напомним, что в данном случае виден результат решения. При первоначальном заполнении в ячейках С6 - С8, Ј6 - Ј8 должны быть записаны просто формулы, а строка 4 не заполняется.

	A	В	C	D	E	F	G	H	I	J	K
1	месторождение	1			2			3			
2	стоимость	15,5	11,5	18,2	19,2	33,3	21,3	14,9	17,9	28,62	
3									целе фун	гвая кция =	####
4	объемы воды	0	300	350	0	0	0	0	200	0	
5	ограничения по запасам: ограничения по запросам:										
6	месторождение	1 = 50									

7	месторождение 2= 150	потребитель 2 =	
8	месторождение 3= 200	потребитель 3 =	

После того, как введены исходные данные, следует выбрать **Поиск решения** в меню **Сервис** и ввести соответствующие данные. Следует отметить, что к ограничениям по запасам и запросам должны быть добавлены ограничения на неотрицательность значений в ячейках четвертой строки. Результатом расчетов будут вписанные в строку 4 объемы, соответствующие оптимальному плану распределения ресурсов.

<u>Задача1.</u> Повторите решение задачи и найдите ошибки в таблице, приведенной выше. Чему равна минимально возможная цена водоснабжения? Какое месторождение оказалось нерентабельным для использования?

Похожим примером является задача о горном производстве. Пусть имеются два рудника, добывающих руду одного типа. В обоих встречаются три сорта руды - богатая, средняя и бедная. Однако ежедневная потребность в руде также жестко определена. Эти данные приведены в таблице:

	Богатая руда	Средняя руда	Бедная руда	Стоимость добычи, у.е.
Рудник А, т	6	2	4	200
Рудник Б, т	2	2	12	160
Потребность, т	> 12	> 8	> 24	

<u>Задача 2.</u> Определите, сколько дней в неделю должен работать каждый рудник, чтобы затраты на добычу были минимальны?

<u>Подсказка к выполнению</u>: Требуется минимизировать целевую функцию

$$Z = 200x_1 + 160x_2$$
 при условии, что: $x_1 + 2x_2 > 12$; $2x_1 + 2x_2 > 8$; $4x_1 + 12x_2 > 24$; $x_1 > 0$; $x_2 > 0$

где x_I - число дней работы рудника A, x_2 - число дней работы рудника Б, а целевая функция характеризует затраты на добычу за неделю.

Раздел 5 МЕТОДЫ АНАЛИЗА СОЦИАЛЬНО-ЭКОЛОГИЧЕСКИХ СИСТЕМ НА ОСНОВЕ ТЕОРИ ГРАФОВ

Занятие 11. <u>Моделирование сетей питания и эко-</u> системы «хищник – жертва»

Моделирование систем «хищник-жертва» является основой решения разнообразных эколого-экономических задач. База для построения таких моделей — разработка сетей питания. В сети питания вершины графа отображают объекты моделирования; дуги проводят от хищника к жертве. На рис.1 показана сеть питания для 5-ти участников.

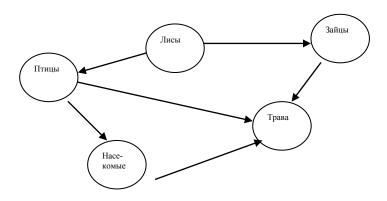


Рис 1

Любой живой организм определяется несколькими показателями, характеризующими нормальное для этого вида состояние окружающей среды. В качестве таких показателей можно использовать такие, как температура, влажность, давление, пища и т.д.

Область, ограниченная определёнными диапазонами изменения показателя, при которых конкретный живой организм существует, называется экологической нишей. Экологические ниши выделяются в экологическом фазовом пространстве, определяемом набором анализируемых показателей. Никакие два вида не имеют в фазовом пространстве одинаковых ниш. Два вида живых организмов конкурируют в том и только в том случае, если их экологические ниши перекрываются. Если же они обладают достаточным сходством, то соответствующие им виды не могут существовать совместно. Это соображение известно под названием принципа конкурирующего исключения или принципа Гаузе.

Для ответа на вопрос, каков минимальный набор показателей для построения экологического фазового пространства, отражающего явления конкуренции, можно построить граф конкуренции на основе сетей питания. Живые организмы в графе конкуренции отображаются в виде вершин графа; между двумя вершинами проводится ребро (связь без направления) в том случае, если существует живой организм, который служит пищей для живых организмов, отображаемых вышеуказанными вершинами. На основе сети питания (рис.1) можно построить граф конкуренции (рис 2).

Разработка графа конкуренции позволяет выделить конкурирующие виды живых организмов и проанализировать функционирование экосистемы, её уязвимость.

Широко распространён экологический принцип соответствия роста сложности экосистемы и увеличения её устойчивости и уменьшения её уязвимости. Если экосистема представлена сетью питания, то можно воспользоваться различными способами измерения сложности: определить число дуг, найти соотношение числа дуг к числу вершин, рассчитать количество входящих и количество исходящих из вершин дуг и т.д.

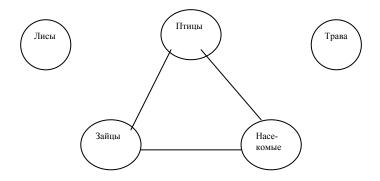


Рис.2. Граф конкуренции для сети питания, представленной на рис.1.

Разнообразные расчёты можно провести и на основе графа конкуренции. Для измерения сложности и разнообразия сети питания используют также трофический уровень. Если рассматривается простая пищевая цепь, то трофический уровень определяется весьма просто. Например, на рис. 3 представлена пищевая цепь, трофические уровни, для которой определены однозначно: каждое звено трофической цепи соответствует трофическому уровню.

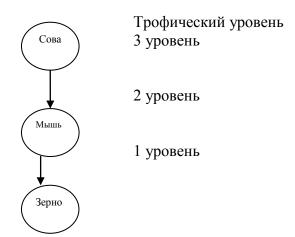


Рис.3. Пищевая цепь, представляющая однозначное определение трофического уровня.

Вопрос об определении трофического уровня в общем случае достаточно сложен. Например, достаточно сложно сказать, каков трофический уровень птиц в сети питания на рис. 1. Если трава имеет трофический уровень =1, то по кратчайшему пути птицы имеют трофический уровень=2, а по наиболее длинному -3. аналогично можно определить трофический уровень для всех вериин питания.

Лабораторные эксперименты, в которых жертва получала постоянно обильное количество пищи показали, что хищники могут вызвать циклические колебания численности жертвы. В таких случаях циклические колебания могут усиливаться под влиянием медленной реакции популяции хищника на изменение плотности жертвы.

При выращивании зерновки в культурах вместе с хищными наездниками регулярные циклические колебания не совпадают по фазе. Наездник откладывает яйца на личинок жука, которыми и питаются вылупляющиеся из яиц личинки паразита. Поэтому обилие жертвы оказывает влияние на численность взрослых наездников в следующем поколении, после того, как личинки перепончатокрылых

превращаются во взрослых особей.

При низкой численности популяции хищника, численность фасолевых зерновок быстро возрастает. По мере возрастания численности жертвы начинает увеличиваться и численность хищников. Когда выедание хищником становится чрезмерным, популяция жертвы сокращается. Полного исчезновения фасолевой зерновки не происходит, поскольку наездники не нападают на все без исключения личинки зерновок. Следовательно, всегда остаётся небольшое число зерновок, с которых начинается новый цикл роста популяции жертвы, когда хищников становится мало.

Циклические колебания популяции были получены в том случае, если в качестве хищника был использован наездник Heterospilus скорость размножения которого ниже и отстаёт от скорости роста популяции фасолевой зерновки. Это запаздывание составляет 2-4 поколения и способствует возникновению циклических колебаний.

У наездника Neocatolaceus репродуктивный потенциал в 6 раз выше. В эксперименте с этим хищником быстрая реакция его популяции на изменение численности жертвы не позволяет получить циклических колебаний популяции.

В случае высокой эффективности хищников популяция жертвы полностью истребляется. Г.Ф. Гаузе продемонстрировал, что этого можно избежать, если какая-то часть жертвы найдёт надёжное убежище и тем самым избежит уничтожения хищниками.

Равновесие в системе

Установлено, что факторы, обеспечивающие стабильность системы «хищник-жертва» следующие:

- неэффективность хищника, бегство жертвы;
- экологические ограничения, налагаемые внешней средой на численность популяции;
 - наличие у хищника альтернативных пищевых ресурсов;

- уменьшение запаздывания в реакции хищника.

Экосистема «хищник-жертва» имеет две возможные точки равновесия. **Первая точка** определяется ёмкостью среды для жертвы в отсутствии хищников. При этом хищник оказывает незначительное воздействие на популяцию жертвы, численность которой ограничивается наличием пищи, пространством обитания и т.д. **Вторая точка** равновесия определяется способностью жертвы находить убежища. При этом хищник доводит популяцию жертвы до уровня, который обусловливается сложностью места обитания. Таким образом, эффективные хищники доводят популяцию жертвы до минимума; неэффективные - уничтожают уязвимую часть популяции жертвы, доводя её численность до уровня близкого к ёмкости среды.

Живая природа находится в равновесии. На базе моделирования можно увидеть, что в системе, описывающей взаимодействие живых организмов, существенное изменение численности живых организмов вызывает катастрофическое изменение во всей системе. Кроме того, сильное уменьшение популяции определённого вида животных может привести к полному исчезновению этих животных. В то же время популяция жертвы, численность которых близки к ёмкости среды, непродуктивны, поскольку их потенциал ограничен внутривидовой конкуренцией за ресурсы.

Важно отметить, что если вмешательство человека не происходит, животный мир приходит в определённое состояние равновесия по прошествии ряда лет.

РАЗДЕЛ 6 ПРИНЯТИЕ РЕШЕНИЙ В УСЛОВИЯХ НЕПОЛНОЙ ИНФОРМАЦИИ

Занятие 12. <u>Использование теории игр для принятия решений</u>

При решении различных эколого-математических задач часто возникает необходимость учитывать неопределённость, возникающую из-за незнания состояний природы. Рассмотрим кратко на упрощённом примере основные термины и принципы игр.

Предположим, что природа может находиться в одном из двух состояний. Фермер, переехавший в новую область, знает, что если идёт дождь, то он продлится не менее 12 часов. Поэтому прежде чем выходить из дома необходимо взглянуть на барометр и одеться по погоде. Барометр может показывать:

- $1 \langle\langle ясно \rangle\rangle$;
- 2 «переменная облачность»;
- $3 \langle\langle дождь \rangle\rangle$.

У фермера имеется три возможности:

- 1 надеть костюм для хорошей погоды;
- 2 надеть костюм и плащ;
- 3 надеть костюм, плащ, галоши, шляпу и взять зонтик.

Наблюдая за барометром, можно установить, как часто в дождливые (или солнечные дни) барометр показывает «ясно», «переменная облачность» или «дождь». Однако фермер не знает, сколько в этой области бывает солнечных дней в году.

Такое положение можно описать следующим образом. Имеются два состояния природы:

 C_1 – день без дождя;

 C_2 – идёт дождь;

Возможны три действия фермера:

- а₁ надеть костюм для хорошей погоды;
- а2 надеть костюм и плащ;
- a_3 надеть костюм, плащ, галоши, шляпу и взять зонтик.

Фермер составил для себя таблицу потерь полезности (табл. 1). При этом он использовал сведения о том, как силён может быть дождь, а также принял во внимание, что носить

плащ и галоши довольно тяжело, а оказаться одетым не по погоде иногда просто смешно.

Таблица 1 Потери полезности фермера

Состояние	Действие						
природы	a_1	a_2	a_3				
C_1	0	1	3				
C_2	5	3	2				

При сопоставлении подобных таблиц обычно обозначают через ноль потери полезности для наиболее благоприятной комбинации состояний природы и действия. Затем сравнивают все остальные комбинации с этой наилучшей. При этом все числа в таблице будут положительными. Потери рассчитывают произвольно. Это не влияет на выбор решения в дальнейшем.

При выборе одежды фермер смотрит на барометр. При этом случайная величина X-показания барометра, может принимать одно из следующих решений:

 X_1 – «ясно»;

 X_2 – «переменная облачность»;

 X_3 – «дождь».

Распределение вероятностей X зависит от состояния природы. Вероятности различных состояний X приведены в таблице 2, прилагаемой к барометру.

Таблица 2 Вероятности различных показателей барометра X, при истинном состоянии природы

Состояние	Υ.	Y.	Y ₂	
природы	Λ_1	\mathbf{A}_2	Λ_3	
C_1	0,60	0,25	0,15	

C ₂	0,20	0,30	0.50
-	0,20	0,50	0,50

Идеальный барометр должен бы показывать 1 в ситуациях, где стоят 0,60 и 0,50 и ноли во всех остальных состояниях. Но все барометры не идеальны, поэтому жители бывают одетыми не по погоде.

Теперь фермер должен решить, как ему реагировать на показания барометра. План его действий называется в теории игр стратегией. В таблице 3 приведены все возможные стратегии. Часть из них выглядит весьма странно, но часть – вполне разумна.

Таблица 3

Воз- можное наблю- дение Х	СТРАТЕГИЯ													
	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S ₉	S ₁₀	S_{11}	S_{12}	S ₁₃	S ₁₄
X_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_2	a_2	a_2	a_2	a_2
X_2	a_1	a_1	a_1	a_2	a_2	a_2	a_3	a_3	a_3	a_1	a_1	a_1	a_2	a_2
X_3	a_1	a_2	a_3	a_1	a_2	a_3	a_1	a_2	a_3	a_1	a_2	a_3	a_1	a_2
	S ₁₅	S ₁₆	S ₁₇	S ₁₈	S ₁₉	S_{20}	S ₂₁	S ₂₂	S ₂₃	S ₂₄	S ₂₅	S ₂₆	S ₂₇	
X_1	a_2	a_2	a_2	a_2	a_3	a_3	a_3	a_3	a_3	a_3	a_3	a_3	a_3	
X_2	a_2	a_3	a_3	a_3	a_1	a_1	a_1	a_2	a_2	a_2	a_3	a_3	a_3	
X_3	a_3	a_1	a_2	a_3	a_1	a_2	a ₃	a_1	a_2	a_3	a_1	a_2	a ₃	

Например, стратегия S_2 — это стратегия упрямой жены, принимающей решение, противоположное разумному. Стратегии S_1 , S_{14} , S_{27} — пренебрежение всеми данными. Это стратегия рассеянного человека. С другой стороны

стратегии S_6 , S_9 , S_{15} , S_{18} — это разумные стратегии, характеризующиеся долей консерватизма.

Чтобы оценить все эти стратегии, надо вычислить ожидаемые потери полезности, соответствующие каждому состоянию природы С и каждой стратегии S. Величины ожидаемых потерь для некоторых стратегий представлены в таблице 4. расчёт производится следующим образом. Стратегия S_5 , состояние природы С $_1$. Действие a_1 будет предпринято, если $X=X_1$, вероятность чего равна 0,6. Действие a_2 будет предпринято, если $X=X_2$, или X_3 , вероятность чего равна 0,25+0,15=0,40. Действие a_3 не предпринимается никогда. Таким образом, действия a_1 , a_2 , a_3 , которым соответствуют потери 0; 1; 3, не предпринимаются с вероятностью 0,60; 0,40 и 0, поэтому средние потери равны 0,60*0+0,40*1+0*3=0,40.

Таблица 4 Потери, вероятности действия и ожидаемые потери для стратегий и S_{22}

Состоя-		Потери	1	Bepo	Вероятность действия				
ние		Для S ₅ =(a ₁ , a ₂ , a ₃)							
приро-							потери		
ДЫ	$\mathbf{a_1}$	$\mathbf{a_2}$	\mathbf{a}_3	$\mathbf{a_1}$	\mathbf{a}_2	\mathbf{a}_3			
C_1	0	1	3	0,60	0,40	0	0,40		
C_2	5	3	2	0,20	0,80	0	3,40		
	Для S_{22} =(a_3, a_2, a_1)								
	$\mathbf{a_1}$	$\mathbf{a_2}$	\mathbf{a}_3	$\mathbf{a_1}$	\mathbf{a}_2	\mathbf{a}_3			
C_1	0	1	3	0,15	0,25	0,60	2,05		
C_2	5	3	2	0,50	0,30	0,20	3,80		

Аналогичный математический аппарат может быть применён для решения реальных задач, встающих перед фермером, работающим в сельском хозяйстве и имеющим непосредственное отношение к природной окружающей среде. Цель любого ведения хозяйства — получение устой-

чивого количества продукции, прибыли и планомерного ведения хозяйства.

Раздел 7 МАТЕТАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ПОПУЛЯЦИОННОЙ ЭКОЛОГИИ

Занятие13. <u>Неограниченный (независимый от плотности) рост популяции</u>

Независимый от плотности рост - это простейшая модель изменения численности популяции во времени, основанная на устранения из рассмотрения множества факторов, которые усложняют этот процесс в природе. Так, на динамику естественных популяций оказывают влияние две совокупности взаимодействующих процессов: рождаемость и иммиграция увеличивают число особей в популяции, тогда как смертность и эмиграция уменьшают его. Для того, чтобы упростить ситуацию предположим что: (1) процессы иммиграции и эмиграции уравновешивают друг друга так, что лишь рождение и гибель особей влияют на плотность популяции; (2) все особи идентичны друг другу, в особенности в отношении их способности к размножению и вероятности гибели; (3) популяция состоит лишь из партеногенетических самок, т.е. мы можем игнорировать все сложности, связанные с обоеполым размножением, и (4) ресурсы среды бесконечны и поэтому только врожденные способности особей к размножению и их смертность влияют на величину популяции. Эти предположения позволяют построить упрощенную модель роста популяции. Представляется очень полезным проанализировать подобную модель в двух вариантах в соответствии с двумя основными типами жизненных циклов организмов в природе.

Геометрический рост популяции

с дискретными поколениями

Подобная модель пригодна для описания роста популяций множества видов растений и животных, для которых характерно сезонное размножение. Особи в такой популяции представлены рядом когорт, все члены которых находятся на одной и той же онтогенетической стадии. Предположим далее, что каждый временной интервал (например, год) начинается с появления новорожденных новой когорты и что, если они проживут достаточно долго, то произведут на свет новую когорту потомков в начале следующего временного интервала. Родители могут все погибать до начала размножения своих потомков (как у однолетних растений и множества беспозвоночных), или же некоторые из них могут выживать и повторно размножаться так, что возникает частичное перекрывание поколений (как у многих птиц и млекопитающих). В обоих случаях молодняк появляется почти синхронно группами, разделенными четкими интервалами. Подобный дискретный рост популяции лучше всего описывает следующее конечное разностное уравнение:

$$N_{t+1} = pN_t + pbN_t = (p + pb)N_t$$

где $N_{\rm t}$ - величина популяции в момент t; b - рождаемость на 1 самку на 1 интервал; p - вероятность выживания особи за 1 интервал.

Определим выражение (p+pb) как новый параметр λ , отражающий совокупный эффект рождаемости и смертности и позволяющий рассчитать сумму числа выживших за интервал особей и их потомства Тогда:

$$N_t = \lambda N_{t-1} = \lambda(\lambda N_{t-2}) = \lambda^t N_0$$

Параметр λ - это коэффициент геометрического роста (geometric growth rate), т.е. мера изменения величины популяции в течение дискретного промежутка времени t.

Если $\lambda=1$, особи в популяции лишь замещают друг друга, и размеры ее не изменяются. Если $\lambda<1$, популяция будет уменьшаться до полного вымирания, а если $\lambda>1$, она будет расти. До тех пор, пока λ остается постоянной, мы можем предсказать величину популяции в любой последующий момент, зная первоначальную численность особей (N_0) и коэффициент роста (λ) и используя следующее уравнение:

$$N_t = \lambda^t N_0$$

Дискретный и независимый от плотности рост популяции совершенно аналогичен увеличению размера банковского вклада, где N_0 - это первоначальный вклад, λ - процент прироста и t - интервал, за который начисляется соответствующий процент. Рост популяции, как и вклада в банке, может быть изображен на графике в виде ступенчатой линии, каждая ступенька в которой соответствует величине временного интервала. В биологическом контексте наиболее разумно использовать в качестве интервалов для описания геометрического роста продолжительность одного поколения. В этом случае значение λ совпадает с так называемой *чистой скоростью размножения*, обычно обозначаемой как R_0 .

Экспоненциальный рост популяции при непрерывном размножении.

Теперь рассмотрим популяцию организмов подобных человеку, или же, например, бактерии в культуральной среде, которые размножаются непрерывно, причём поколения широко перекрываются и особи разных генераций и возрастов могут встречаться одновременно. Непрерывный рост подобной популяции лучше всего описывает дифференциальное уравнение, в котором мгновенный прирост определен в расчете на бесконечно малый промежуток времени.

Если N — величина популяции, b — мгновенная рождаемость на одну особь за бесконечно малый промежуток времени и d — мгновенная смертность на одну особь за бесконечно малый промежуток времени, тогда прирост популяции за бесконечно малый промежуток времени определяется уравнением:

$$dN/dt = (b - d)N$$

Если мы объединим рождаемость и смертность в одной переменной r=(b-d), которую обычно называют специфической (внутренне присущей) скоростью естественного роста (intrinsic rate of natural increase), или скоростью экспоненциального роста (exponential growth rate) популяции, а иногда также и мальтузианским параметром, тогда:

dN/dt = rN

Здесь опять, как и в дискретной модели, прирост популяции в единицу времени пропорционален ее величине N, причем r является коэффициентом пропорциональности. Когда r=0, рождаемость и смертность уравновешивают друг друга, вновь рожденные особи просто замещают погибающих, и величина популяции остается неизменной. Когда r<0, популяция уменьшается и вымирает, а когда r>0, она неограниченно растет. Если в уравнении 5 мы разделим величину прироста популяции на число особей в ней, то получим:

dN/Ndt = r

Из этого уравнения ясно, что r – это мера скорости изменения численности популяции за бесконечно малый промежуток времени и в пересчете на одну особь. Поэтому этот параметр называют также удельной мгновенной скоростью роста (per capita instantaneous growth rate) популяции. Независимый от плотности рост популяции предполагает, что удельная скорость роста остается неизменной.

Дифференциальное уравнение непрерывного роста 2 может быть проинтегрировано для того, чтобы предсказывать величину популяции в будущем (аналогично уравнению 3 для дискретного случая):

$$N_t = N_0 e^{rt}$$

Если удельная скорость роста остается постоянной, то с помощью этого уравнения мы можем рассчитать численность особей в популяции в будущем (N_t) , исходя из ее величины в данный момент (N_0) и времени, в течение которого происходит рост (t). График этого уравнения при r > 0 представляет собой экспоненту, описывающую неограниченный рост.

Сравнение дискретной и непрерывной моделей независимого от плотности роста

Если оба параметра λ и r являются константами неограниченного роста популяции, то существует ли между ними какая-либо связь? Чтобы определить ее форму, рассмотрим как описывают процесс удвоения величины популяции две рассмотренные модели. Такое сравнение предполагает, в обеих моделях использован один и тот же временной интервал t, равный средней продолжительности одного поколения.

Случай 1. Дискретный геометрический рост После логарифмирования: Отсюда:

$$N_{t} = \lambda^{t} N_{0} = 2N_{0}$$
$$\lambda^{t} = 2$$
$$t \ln \lambda = \ln 2$$
$$t = (\ln 2)/(\ln \lambda)$$

Случай 2. Непрерывный экспоненциальный рост

$$N_t = e^{rt} N_0 = 2N_0$$

 $e^{rt} = 2$
 $rt = \ln 2$
 $t = (\ln 2)/r$

После логарифмирования: Поскольку величина t одинакова в обоих случаях, то:

$$(\ln 2)/(\ln \lambda) = (\ln 2)/r$$

 $\lambda = e^r$
 $\ln \lambda = r$

Заключение

Для чего же нужны эти две параллельные и весьма сходные модели независимого от плотности роста популяции? Дело в том, что они созданы для описания динамики численности популяций организмов с очень разными схемами жизненного цикла. Вы убедитесь, что в тех моделях популяционной динамики, которые включают зависимые от плотности обратные связи, эти различия жизненных циклов оказывают поразительное влияние на характер популяционной динамики, и во всех этих случаях сравнение дискретной и непрерывной моделей становятся исключительно интересными.

Насколько хорошо модели геометрического или экспоненциального роста могут описывать динамику реальных популяций в природе? Отвратительно плохо! При $\lambda > 1$ или r > 0 обе эти модели дают математическое описание экологического взрыва, т.е. такого роста популяции, когда она рано или поздно занимает собою всю поверхность нашей планеты, что неизбежно приводит ее к гибели. Подобный неограни-

ченный рост популяций в природе наблюдается очень редко и только в течение непродолжительного времени. Причина столь плохого соответствия обоих моделей действительности заключается в том, что они основаны на совершенно нереалистичных предположениях, что (1) все особи в популяции совершенно одинаковы и (2) ресурсы среды неограниченны, и поэтому г может оставаться постоянной.

Каково же назначение наших моделей популяционного роста, если они столь плохо описывают реальность? Прежде всего, они являются великолепной иллюстрацией логических следствий очень простых идей относительно механизмов динамики популяции. Кроме того, мы можем использовать эти очень простые модели в качестве основы для построения более сложных, добавляя в них новые условия и параметры, что сделает их реалистичнее.

Практическая работа с моделями

Пояснения к окну ввода параметров модели

Выберите Дискретную (Discrete) или Непрерывную (Continuous) модель и введите их параметры:

N0 - Начальная численность популяции; по умолчанию N0 = 10;

возможный интервал от 0 до 1E10 (т.е. 10^{10}). Lambda -Коэффициент геометрического роста популяции; может варьировать от 0 до 1Е6.

г - Удельная мгновенная скорость роста популяции; значения должны лежать в интервале от -5 до +5. Plot for how many generations - Число поколений, в течение которых вы хотите наблюдать рост популяции (от 1 до 1000000).

Пояснения к окну вывода результатов моделирования Основной график показывает динамику роста численности популяции во времени. Единицей времени, откладываемой по оси абсцисс, является поколение (в дискретной модели) или же средняя продолжительность одной генерации (в непрерывной модели). Если в рамках модели мы позволим популяции расти в течение достаточного числа поколений при положительных значениях r или $\lambda > 1$, этот рост нередко заканчивается "популяционным взрывом", когда величина популяции превосходит вычислительные способности модели и график далее не может быть продолжен. Однако, рост популяции до этого момента изображается нормально. В таких случаях используйте для тех же начальных условий меньшее число поколений, чтобы увидеть ранний период роста данной популяции более ясно.

Исследование дискретной модели

- 1. При одной и той же исходной величине популяции (например, 10) последовательно используйте возрастающие значения λ , например: 1.1 1.2, 1.3, 1.5, 1.8, 2, 3, 5, 10. Как изменяется характер роста популяции? Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. При каждом значении Л перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 2. Последовательно увеличивайте число поколений. Определите, сколько поколений проходит до "популяционного взрыва" при различных значениях λ . Используйте функции "Zoom" и "Координатная сетка", чтобы увидеть характер роста популяции в начальный период.
- 3. Теперь исследуйте поведение модели при значениях $\lambda < 1$ (например: 0.9, 0 8, 0.7, 0.5, 0.3, 0.1) и достаточно большой исходной величине популяции (например, 1000). Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. При каждом значении λ перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 4. Последовательно увеличивайте число поколений. Определите, сколько поколений потребуется для вымирания популяции (будем считать, что это происходит, когда остается менее одной особи) при этих значениях λ ? Ис-

пользуйте для ответа на этот вопрос функции "Zoom" и "Координатная сетка".

Исследование непрерывной модели

- 1. При исходных значениях N0 = 10 и r = 0.1 введите большее число поколений (например, 50 или 100). Нажмите <Enter> и рассмотрите полученную кривую роста. Перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 2. Нажав <Space Bar>, перейдите к окну с четырьмя графиками. Верхние два из них вы уже видели. Какие зависимости изображены на двух нижних? Что такое dN/dt и почему этот параметр линейно возрастает со временем? Что это означает и как связано с характером роста популяции? Почему зависимость dN/Ndt от времени выглядит на нижнем левом графике как прямая линия, параллельная оси абсцисе?
- 3. При одной и той же исходной величине популяции (например 10) последовательно используйте возрастающие значения г, например: 0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 5. Как изменяется характер роста популяции? Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. При каждом значении г перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 4.Последовательно увеличивайте число поколений. Определите, сколько поколений проходит до "популяционного взрыва" при различных значениях г? Используйте функции "Zoom" и "Координатная сетка", чтобы увидеть характер роста популяции в начальный период времени.
- 5. Теперь исследуйте поведение модели при значениях r < 0 (например: -0.1, -0.2, -0.3, -0.5, -0.8, -1, 2, -3, -5) и достаточно большой исходной величине популяции (например, 1000). Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. При каждом значении r перейдите r полулогарифмическому масштабу и обратно что изменяется на графике и почему?

6. Последовательно увеличивайте число поколений. Определите, сколько поколений потребуется для вымирания популяции (будем считать, что это происходит, когда остается менее одной особи) при этих значениях г? Используйте для ответа на этот вопрос функции "Zoom" и "Координатная сетка".

Рекомендуемая литература

- 1. Бигон, М., Дж. Харпер и К. Таунсенд. Экология. Особи, популяции и сообщества. М.: Мир, 1989, том 1 с. 219–226.
- 2. Гиляров, А.М. Популяционная экология. М.: Изд. МГУ, 1990, с. 74–77.
- 3. Одум, Ю. Экология. М.: Мир, 1988, том 2 с. 22–30. Пианка, Э. Эволюционная экология. М.: Мир, 1981, с. 124–128.

Занятие 14. <u>Ограниченный (зависимый от плотности) рост популяции</u>

При моделировании зависимой от плотности динамики популяции предполагают, что существует некоторая обратная связь между удельной мгновенной скоростью роста (r) и числом особей в популяции (N), т.е. при возрастании численности скорость прир о с та в пересчете на одну особь уменьшается, что обычно и наблюдается в природных условиях. Эта обратная зависимость может, в принципе, принимать любую математическую форму. Однако, если мы допустим, что она линейна, то получим самую простую модель ограниченного роста популяции – логистическую.

Предположим, что в данных условиях среды наличные ресурсы могут обеспечивать существование в популяции не более K особей. Таким образом, K – это *предельная плотность насыщения*, или иначе *поддерживающая емкость среды (environmental carrying capacity)* для данной популяции. Тогда величина (K-N) является мерой неиспользованной популяцией в данный момент емкости сре-

ды, а (K-N)/K – это доля всей емкости среды, остающаяся в данный момент в распоряжении растущей популяции. Предположим, что удельная скорость роста популяции прямо пропорциональна доле неиспользованной емкости среды. В этом случае рост популяции описывает следующее уравнение:

$$\frac{1}{N} \frac{dN}{dt} = r_{\text{max}} \frac{K - N}{K}$$

Ясно, что мгновенная удельная скорость роста популяции dN/Ndt максимальна $(r=r_{\rm max})$ когда N=0 и (K-N)/K=1, и равна нулю при N=K и (K-N)/K=0. Это означает, что популяция прекращает рост при достижении численности K, когда среда обитания оказывается полностью занятой.

В непрерывной модели, описываемой дифференциальным уравнением параметр r – это мгновенная удельная скорость роста, однако, ее численное значение всегда определяют по отношению к какому-либо конечному промежутку времени. Для того, чтобы упростить сравнение с аналогичными дискретными моделями, мы приравняем этот интервал к средней продолжительности одного поколения.

Рассматриваемая модель предполагает, что изменение плотности популяции немедленно сказывается на скорости ее роста. На самом деле реалистичнее было бы предполагать, что эта обратная связь действует с некоторым запаздыванием. Действительно, при увеличении плотности популяции сокращение количества доступных ресурсов может сказаться не столько на благополучии данного поколения особей, сколько на выживаемости и плодовитости их потомков. Мы можем ввести в нашу модель подобное запаздывание, если предположим, что изменения плотности популяции сказываются на скорости ее роста не сразу, а через одно, два или более поколений:

$$\frac{1}{N} \frac{dN}{dt} = r_{\text{max}} \frac{K - N_{(t-T)}}{K}$$

В этом уравнении скорость роста популяции зависит от ее численности в момент (t-T), где T – это время запаздывания (time lag) обратной связи, измеряемое числом поколений. Даже столь простая модель позволяет выявить основные эффекты запаздывания на динамику роста популяции. Простейшая модель ограниченного роста популяции с дискретными поколениями может быть, по аналогии с непрерывной логистической моделью, представлена следующим конечным разностным уравнением:

$$N_{t+1} = N_t e^{r(1-N/K)}$$

Здесь N_{t+1} - величина популяции в поколении t+1, N_t - в предыдущем поколении, K - емкость среды, а r - это в данном случае не мгновенная, а конечная скорость роста (finite rate of increase), или коэффициент увеличения (multiplicative growth factor) популяции за одно поколение ($r=\ln\lambda$, где коэффициент геометрического роста популяции - см. раздел 1). Поскольку данное уравнение моделирует рост в дискретных поколениях, зависимая от плотности обратная связь не является в нем непрерывной. В связи с этим возникают интересные эффекты, которые не могут проявляться в непрерывной модели.

Практическая работа с логистическими моделями Пояснения к окну ввода параметров модели

Выберите *Henpepывную (Continuous), Henpepывную с* запаздыванием (Lagged Continuous) или Дискретную (Discrete) модели и введите их параметры:

N0 - Начальная численность популяции; по умолчанию N0=5; интервал возможных значений от 1 до 10000; может быть как меньше, так и больше K.

- K Предельная емкость среды; интервал возможных значений от 0 до 10000.
- r Удельная мгновенная скорость роста популяции, или (в дискретной модели) коэффициент увеличения популяции за одно поколение ($r=\ln \mathbf{A}$ или $r=\ln R_0$); значение r должно быть положительным и лежать в интервале от 0 до 5. Исследование моделей разумно начинать с интервала 0 < r < 1, а затем попробовать более высокие значения r.
- T Задержка проявления зависимых от плотности эффектов, т.е. время запаздывания обратной связи, измеряемое числом поколений; может принимать значения от 0 до 5.

Исследование непрерывной модели

- 1. При исходных значениях N0 = 5, K = 500 и r = 0.2 нажмите <Enter> и рассмотрите полученную кривую роста популяции. Перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 2. Нажав <Space Bar> перейдите к окну с четырьмя графиками. Верхние два из них вы уже видели. Почему скорость роста популяции dN/dt имеет такую зависимость от времени? Что это означает и как связано с характером роста популяции? В какой момент времени скорость роста максимальна и почему? Почему зависимость dN/Ndt от времени выглядит именно так, как это изображено на нижнем левом графике?
- 3. При одной и той же исходной величине популяции (например, 5) и емкости среды (например, 500) последовательно используйте возрастающие значения r, например: 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0 8, 1, 2, 3, 5. Как изменяется при этом характер роста популяции? Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. При каждом значении r перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему? Как и почему изменяются при увеличении r зависимости dN/dt и dN/Ndt от времени? Используйте функцию "Zoom",

чтобы увидеть характер роста популяции в разные периоды времени.

4. Теперь исследуйте поведение модели в тех случаях, когда исходная численность особей (например, 1000) превышает емкость среды (например, 500); используйте те же значения r - 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0 5, 0.8, 1, 2, 3, 5. Как изменяется при этом численность популяции и почему так происходит? При каждом значении r перейдите к полулогарифмическому масштабу и обратно - что изменяется на графике и почему? Как и почему изменяются при увеличении r зависимости dN/dt и dN/Ndt от времени?

Исследование непрерывной модели с запаздыванием

- 1. Сравните рост популяции при отсутствии и наличии запаздывания (lag) обратной связи. Для этого включите функцию F4. При исходных значениях N0=5, K=500 и r=0.2 получите сначала кривую роста популяции без запаздывания, а затем перейдите к модели с запаздывания и опять нажмите <Enter>. Как изменяется при наличии запаздывания обратной связи характер роста популяции?
- 2. При одной и той же исходной численности популяции (например, 5), емкости среды (например, 500) и величине запаздывания (например в 1 поколение) последовательно вводите возрастающие значения r, например: 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 1.3, 1.5, 1.7, 2, 3, 5. (Обязательно используйте при этом функцию F4). Как изменяется характер роста популяции при увеличении r? Почему возникают колебания численности? При каких значениях r они затухают со временем, а при каких продолжаются без затухания?
- 3. Теперь при небольших значениях r (от 0 до 0.2) последовательно увеличивайте время задержки обратной связи от 1 до 5 поколений. Что при этом происходит? Почему возникают затухающие колебания? При максимальной ве-

личине запаздывания (5) сделайте r немного больше: 0.3, затем 0.4, 0.5, 0.6. Что происходит? Почему уже при небольших r колебания численности становятся столь значительными? Теперь сделайте r=1. Почему популяция вымерла после первого пика численности?

4. Исследуйте поведение модели в тех случаях, когда исходная численность особей (например, 1000) превышает емкость среды (например, 500); используйте те же значения r - 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 2, 3 5. Как изменяется при этом численность популяции и почему так происходит? После этого определите влияние величины запаздывания сначала при небольших значениях r, потом при более высоких (как в п. 3). Объясните полученные результаты.

Исследование дискретной модели

- 1. При исходных значениях N0 = 5, K = 500 и r = 0.2 нажмите <Enter> и рассмотрите полученную кривую роста популяции. Перейдите к полулогарифмическому масштабу и обратно что изменяется на графике и почему?
- 2. При одной и той же исходной величине популяции (например 5 особей) и емкости среды (например, 500 особей) последовательно используйте возрастающие значения r, например: 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 2, 3, 5 (помните, что при этом геометрический коэффициент роста популяции \mathbf{J} или, что в данном случае одно и то же, чистая скорость воспроизводства R_0 возрастает от 0 до 100000). Нажмите F4, чтобы всегда видеть на экране предыдущую кривую роста. Как изменяется характер роста популяции с увеличением r? Почему возникают колебания численности? При каких значениях r колебания затухают, а при каких становятся незатухающими? Отличается ли механизм возникновения колебаний в популяции с дискретными поколениями от ситуации, которую вы наблюдали в непрерывной модели с запаздыванием?

3. Теперь исследуйте поведение модели в тех случаях, когда исходная численность особей (например, 1000) превышает емкость среды (например, 500); используйте те же значения r-0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 2, 3, 5. Как изменяется при этом численность популяции и почему так происходит?

Рекомендуемая литература

- 1. Бигон, М., Дж. Харпер и К. Таунсенд. Экология. Особи, популяции и сообщества. М.: Мир, 1989, том 1 с. 320–323.
- 2. Гиляров, А. М. Популяционная экология. М.: Изд. МГУ, 1990, с. 86–92.
 - 3. Одум, Ю. Экология. М.: Мир, 1988, том 2 с. 30–41.
- 4. Пианка, Э. Эволюционная экология. М.: Мир, 1981, с. 128–133.

Занятие 15. <u>Модель межвидовой конкуренции Лот-ки-Вольтерры</u>

Модели зависимого от плотности роста, такие как логистическое уравнение, описывают процесс внутривидовой конкуренции, при котором по мере увеличения численности особей ресурсы становятся все более ограничивающим фактором, и удельная скорость роста популяции уменьшается. Модель межвидовой конкуренции Лотки-Вольтерры (Lotka, 1925; Volterra, 1926) построена на основе логистического уравнения и по существу несет в себе все его недостатки. Однако, несмотря на это, данная модель является наиболее простым и с исторической точки зрения очень важным способом анализа межвидовой конкуренции. Она может помочь выявить основные факторы, определяющие исход конкурентного взаимодействия двух видов.

Пусть N1 - численность популяции первого вида, N_2 - численность вто-рого, а предельные плотности насыщения и максимальные удельные ско-рости роста этих популяций

составляют, соответственно, K_1 , K_2 , z_1 и z_2 . Предположим далее, что 10 особей вида 2 при конкуренции все вместе оказывают такое же ингибирующее влияние на вид 1, как одна особь вида 1. Это фактически означает, что каждая особь вида 2 использует лишь 1/10 емкости среды K_1 , занимаемой каждой особью вида 1. Тогда совместное воздействие внутри- и межвидовой конкуренции на вид 1 будет равноценно воздействию $(N_1 + N_2/10)$ особей вида 1. Константа 1/10 в данном выражении называется коэффициентом конкуренции и обозначается через α (или через a_{12} -"альфа один-два"). С помощью этого коэффициента, величина которого зависит, прежде всего, от степени сходства потребностей видов в тех или иных ресурсах, оценивают конкурентное воздействие вида 2 на вид 1 в расчете на одну особь. Умножая N_2 на α , мы выражаем это воздействие через эквивалентное число особей N_{1} . Обратите внимание, что α < 1 означает, что вид 2 оказывает меньшее подавляющее влияние на вид 1, чем вид 1 на самого себя, $\alpha > 1$ означает, что ингибирующее воздействие со стороны вида 2 на вид 1 выражено в большей степени, чем со стороны особей своего вида. Аналогичным образом конкурентное воздействие вида 1 на вид 2 выражают коэффициентом β (или по другой терминологии a_{21} - "альфа два-один").

Важнейшим преобразованием логистического уравнения в модели Лотки-Вольтерры является замена N_1 в скобках на выражение " N_1 плюс число эквивалентов N_1 ', т.е. на $(N_1 + aN_2)$. Тогда логистическое уравнение роста для первого вида можно записать следующим образом:

или:
$$\frac{dN_1}{dt} = r_1 N_1 \frac{\{K_1 - (N_1 + \alpha N_2)\}}{K_1}$$
и для второго вида:
$$\frac{dN_1}{dt} = \frac{r_1 N_1 (K_1 - N_1 - \alpha N_2)}{K_1}$$
:
$$\frac{dN_2}{dt} = \frac{r_2 N_2 (K_2 - N_2 - \beta N_1)}{K_2}$$

Из двух уравнений 14а и 14б и состоит модель Лотки-Вольтерры.

При исследовании свойств этой модели, мы должны, прежде всего, ответить на вопрос: при каких условиях увеличивается или уменьшается численность каждого вида? Для этого нужно построить диаграммы, на которых могут быть изображены все возможные сочетания численностей вида 1 и вида 2, т.е. значений N_1 и N_2 . На таких графиках, обычно называемых фазово-плоскостными диаграммами, или ϕ азовыми портретами, значения N_1 отложены по оси абсцисс, а N_2 – по оси ординат, так что численность обоих видов снижается вниз и влево, а возрастает вверх и вправо. Одни сочетания N_1 и N_2 будут вызывать увеличение численности вида 1 и (или) вида 2, тогда как другие будут приводить к уменьшению численности вида 1 и (или) вида 2. Кроме того, для каждого вида можно провести изоклину, т.е. линию, соединяющую точки, в которых скорость роста популяции данного вида равна нулю. Изоклина отделяет на диаграмме те сочетания N_1 и N_2 , при которых наблюдается рост популяции данного вида, от тех сочетаний, при которых популяция вида сокращается.

Для того, чтобы провести изоклину для вида 1, воспользуемся тем, что на этой линии по определению dN/dt=0. Поэтому из уравнения 1а следует:

$$r_1N_1(K_1 - N_1 - \alpha N_2) = 0$$

Это выражение справедливо в трех случаях: (1) когда удельная скорость роста популяции (r_1) равна нулю, (2) когда численность популяции (N_1) равна нулю и (3) когда

$$K_1 - N_1 - \alpha N_2 = 0.$$

что можно записать как

$$N_1 = K_1 - \alpha N_2$$

Другими словами, в любой точке прямой линии, которую описывает это уравнение, dN/dt=0. Следовательно, эта линия и является изоклиной для вида 1, а поскольку она представляет собой прямую, то ее можно провести, определив всего две точки и затем соединив их. Так, из уравнения 2 следует, что:

при
$$N_1 = 0$$
, $N_2 = K_1/\alpha$ (точка на оси ординат) при $N_2 = 0$, $N_1 = K_1$ (точка на оси абсцисс)

Соединив эти две точки, получим изоклину для вида 1. Точно таким же образом определим условия, которые приводят к увеличению или уменьшению вида 2 и проведем изоклину для него:

при
$$N_2 = 0$$
, $N_1 = K_2/\beta$ (точка на оси ординат) при $N_1 = 0$, $N_2 = K_2$ (точка на оси абсцисс)

Для того, чтобы в этой модели определить исход конкуренции, необходимо изоклины для двух видов провести на одной диаграмме, что даст возможность предсказывать поведение обеих популяций.

Практическая работа с моделью Лотки-Вольтерры

Пояснения к окну ввода параметров модели

Which plot would you like to view? - Какой график вы хотели бы видеть? Модель представляет результаты своей работы в виде двух диаграмм. Поэтому сначала необходимо выбрать ту из них, которую вы хотите увидеть в первую очередь:

N vs T - динамика численности видов во времени. N_1 vs N_2 - фазово-плоскостная диаграмма.

Далее следует выбрать один из двух вариантов работы модели:

Run to steady state - провести расчеты до достижения устойчивого состояния. *or until* t = 100 - провести расчеты до момента времени t = 100. Значение t составляет 100 по умолчанию, но может быть установлено в интервале от 0.001 до 10^6 Это позволяет исследовать промежуточные результаты процесса конкуренции. Мы рекомендуем вам начать с первого варианта работы модели.

Please, enter the values for ... Species 1... Species 2 - для каждого из двух видов введите значения следующих параметров:

- N0 Начальная численность популяции. Интервал возможных значений от 0 до 10000. Может быть как меньше, так и больше K. По умолчанию N01=10, $N0_2=20$.
- r Удельная мгновенная скорость роста популяции; интервал возможных значений от 0 до 5. По умолчанию r_1 = 0.9, r_2 = 0.5.
- K Предельная емкость среды. Интервал возможных значений от 0 до 10000. По умолчанию $K_1 = 500, K_2 = 700$.
- ${f a}, {f p}$ Коэффициенты конкуренции. Интервал возможных значений от 0 до 100. По умолчанию ${f a}=0.6, {f p}=0.7.$

Пояснения к окну вывода результатов моделирования N vs T - Динамика численности популяций двух видов в течение процесса конкуренции. В типичном случае, когда

NO меньше поддерживающей емкости среды, обе популяции будут расти до тех пор, пока зависимые от плотности эффекты не станут достаточно значимыми и не начнет проявляться результат конкуренции. После этого, в зависимости от выбранных значений параметров, будет либо происходить конкурентное вытеснение одного вида другим, либо возникнет ситуация сосуществования видов на определенном уровне их численностей.

NI vs N_2 - Фазовая диаграмма, на которой проведены изоклины для популяций обоих видов и траектория (N_2 по отношению к N_1), которую прошли популяции при конкурентном взаимодействии.

Исследование модели

- 1. Сначала запустите модель со значениями параметров, установленными по умолчанию. Внимательно рассмотрите обе диаграммы. К какому результату приводит конкуренция? Как это можно определить по фазовой диаграмме? Где находится точка равновесия между конкурирующими популяциями?
- 2. Исследуйте фазовую диаграмму с помощью функции "Анализ стабильности", для чего нажмите <Alt+S>. Вы можете выбрать с помощью курсора любое начальное сочетание численностей обеих популяций и проследить за их конкуренцией в этих условиях она будет представлена траекторией, проведенной из выбранной точки к точке равновесия (если таковая имеется при выбранных параметрах).
- 3. Если вы разобрались с поведением модели, то можете вводить различные значения параметров и исследовать получаемые при этом результаты. Используйте функцию F4, чтобы сравнивать результаты двух последовательных циклов моделирования.

Основное задание, которое вам необходимо выполнить на занятии, состоит в следующем. Известно, что теоретически возможны 4 исхода конкуренции между двумя

популяциями: (1) вид 1 является более сильным конкурентом и при любых начальных условиях вытесняет вид 2, а сам достигает предельной плотности насыщения; (2) более сильным конкурентом является вид 2, который всегда вытесняет вид 1; (3) в зависимости от первоначальных значений численности либо первый вид вытесняет второй, либо происходит обратное; возможно сосуществование конкурирующих популяций, но оно неустойчиво, и даже при небольшом отклонении от точки равновесия один из видов обязательно вытесняет другой; (4) существует устойчивое равновесное сочетание численностей обоих видов, к которому популяции стремятся при любых первоначальных значениях их численности.

Исследуйте поведение модели при различных значениях основных параметров и определите условия, необходимые для реализации всех четырех исходов конкурентной борьбы. Как располагаются изоклины видов в этих четырех случаях? Нарисуйте четыре варианта фазовой диаграммы у себя в тетради. Теперь, исходя из взаимного расположения изоклин видов на этих диаграммах, представьте в математической форме те соотношения между параметрами K_1 , K_2 , а и \mathbf{p} , которые обеспечивают реализацию всех четырех исходов конкуренции. Ответьте на вопросы:

1. В каком варианте один из видов оказывает большее ингибирующее влияние на своего конкурента, чем этот последний сам на себя?

В каком варианте оба вида сильнее влияют на конкурента, чем на особей своего вида, т.е. чем сами страдают от внутривидовой конкуренции?

3. В каком варианте оба вида в меньшей степени влияют на конкурента, чем на особей своего вида, т.е. чем сами страдают от внутривидовой конкуренции?

Рекомендуемая литература

- 1. Бигон, М., Дж. Харпер и К. Таунсенд. Экология. Особи, популяции и сообщества. М.: Мир, 1989, том 1 с. 351–359.
- 2. Гиляров, А. М. Популяционная экология. М.: Изд. МГУ, 1990, с. 151–159.
- 3. Пианка, Э. Эволюционная экология. М.: Мир, 1981, с. 195–203.

Занятие 16. Выбор оптимального пищевого рациона

Многие животные, в особенности хищники, при добывании пищи сталкиваются с необходимостью выбора: поедать ли все встреченные пищевые объекты (виды жертв), или же только некоторые из них. Основные закономерности этого выбора между универсализмом и различной степенью специализации стали предметом исследований в рамках большого раздела поведенческой экологии, известного как теория оптимального фуражирования (т.е. добывания корма). Одной из первых моделей, рассматривавшихся экологами в начале 70-х годов, была ситуация, в которой различные типы пищи отличаются по содержанию энергии (или питательных веществ) и времени, которое требуется для поиск а и для обработки, т.е. добывания (поимки) и поедания, каждой жертвы. Основное положение теории оптимального фуражирования в применении к выбору пищевого рациона, заключается в том, что набор поедаемых видов жертв, должен быть таким, чтобы обеспечивать хищнику максимально возможную в данных условиях скорость поступления энергии.

В рассматриваемой здесь простейшей модели каждый вид жертв (i) в данной среде характеризуется некоторым обилием (R_i), временем обработки (H_i) и содержанием энергии (E_i) в одной особи жертвы. В основе модели лежит так называемое дисковое уравнение Холлинга, описывающее функциональный ответ 2-го типа, когда скорость потреб-

ления жертв (f) монотонно убывает с ростом их обилия (R) в среде вследствие возрастания суммарного времени, затрачиваемого хищником на обработку жертв:

$$f = CR / (1 + CRH)$$

где C — эффективность охоты хищника и H — время обработки им каждой жертвы (подробнее см. в разделе 8 — Tema-логистическая модель). Использование функционального ответа 2-го типа представляется вполне реалистичным для множества хищников.

Для упрощения предположим, что эффективность потребления C=1, т.е. хищник успешно поедает каждую встреченную жертву. Тогда этот параметр может быть исключен из рассмотрения. Далее, поскольку наш хищник использует одновременно несколько (n) видов жертв, то для определения суммарной скорости потребления всех жертв (F_n) следует в уравнении 1 использовать суммы значений их обилия и произведений обилия на время обработки:

$$F_{\rm p} = \sum R_{\rm i} / \left(1 + \sum R_{\rm i} H_{\rm i}\right) \tag{2}$$

Теперь, для того чтобы вычислить скорость поступления энергии (Q_n) при использовании n жертв, следует ввести в уравнение 2 их энергетическую ценность (E):

$$Q_{n} = \sum R_{i}E_{i} / (1 + \sum R_{i}H_{i})$$
(3)

Теоретически также возможно, что для оптимизации своего рациона хищник будет поедать только некоторую часть (p_i) встреченных жертв данного вида. Тогда уравнение 3 следует преобразовать следующим образом:

$$Q_{n} = \sum p_{i}R_{i}E_{i} / (1 + \sum p_{i}R_{i}H_{i})$$

Исследование модели заключается в определении скорости поступления энергии для пищевых рационов, включающих жертв разных видов в различных сочетаниях, и нахождении среди них самого оптимального, т.е. того, кото-

рый обеспечивает максимальную скорость поглощения энергии хищником Исследование подобных моделей, проведенное еще в начале 70-х годов, показало, что выбор оптимального рациона сводится к ранжированию жертв по величине E/H i, именуемой выгодностью, или иначе пищевой ценностью данной жертвы для хищника, и питанию одним или несколькими видами жертв, характеризующимися в этом ряду наивысшими рангами (так называемое ранжированное предпочтение). Число видов жертв, включенных в оптимальный рацион, зависит от соотношений между их пищевой ценностью и обилием в среде обитания (которое определяет среднее время поиска хищником очередной жертвы). Однако, в любом случае при расширении рациона в него может быть добавлен только объект, следующий по рангу (т.е. с меньшей величиной Е/Н) за объектом, уже включенным ранее в рацион. Было также установлено, что оптимизация пищевого рациона никогда не может быть достигнута путем потребления лишь части встреченных жертв некоторого вида, т.е. хищник должен всегда действовать по принципу "все или ничего" - либо включать данный вид жертв в свое питание, либо полностью от него отказываться. В связи с этим обстоятельством в данной программе реализована модель, описываемая уравнением 3.

Исследование моделей выбора оптимального пищевого рациона позволило сделать несколько интересных предсказаний, которые в целом неплохо подтверждаются эмпирическими данными: (1) Включение или невключение j - того вида жертвы в рацион зависит от его выгодности E_j/H_j , от средней выгодности уже вошедших в состав рациона жертв $\mathbf{E}E_iR_j/\mathbf{E}H_iR_i$ и от среднего времени поиска уже включенных в пищу жертв, которое пропорционально обратной величине их суммарного обилия - $1/\mathbf{E}R_i$ Но решение хищника не зависит от времени поиска j -той жертвы и, следовательно, от ее обилия в среде обитания R_i . таким об-

разом, хищники должны игнорировать недостаточно выгодные объекты питания независимо от их обилия.

- (2) Хищники должны в большей степени специализироваться в тех ситуациях, когда выгодные виды жертв многочисленны и(или) когда велики различия в выгодности между имеющимися в среде видами жертв, и не проявлять разборчивости если выгодные категории редки и(или) различия в выгодности встречающихся жертв незначительны.
- (3) При прочих равных условиях пищевой рацион хищника должен быть шире в бедной среде, где объекты питания встречаются относительно редко, чем в более богатой, где обилие жертв велико.
- (4) Хищники, у которых время обработки заметно короче по сравнению со временем поиска, должны быть универсалами, поскольку они могут быстро съесть уже найденную добычу и сразу же начать поиски новой (пример многие насекомоядные птицы). Напротив, хищники, у которых время обработки относительно велико по сравнению со временем поиска, должны быть специалистами и выбирать один или несколько видов жертв с максимальными значениями E/H (пример многие крупные хищные млекопитающие.

Эта программа предназначена для иллюстрации приведенных выше заключений Вам необходимо задать число видов жертв и значения *E*, *H*, и *R* для каждого вида. Программа производит необходимые вычисления и выводит состав оптимального в данных условиях рациона (т.е. число видов жертв с наибольшими рангами, которые должны быть использованы, чтобы максимизировать темп поступления энергии) и график описывающий зависимость скорости получения энергии для различных гипотетических рационов, состоящих из одного, двух, трех и т.д. видов жертв в порядке убывания их рангов. Нажав клавиши <Escape>, <Enter> или <Space Bar>, вы можете вернуться к окну ввода

параметров и изменить любой из них. Например, вы можете изменить обилие некоторых или всех видов жертв, и проследить, какое влияние это окажет на состав оптимального рациона. Пропорциональное увеличение обилия всех видов жертв в конечном счете приведет к тому, что лишь самые выгодные (с самым высоким E/H) из них останутся в составе рациона. Изменение обилия жертв, которые не включены в питание хищника, не будет приводить к их включению Увеличение обилия видов жертв с наибольшими рангами, из числа включенных в оптимальный рацион, в конечном счете приводит к исключению из него видов с более низкими значениями выгодности.

Практическая работа с моделью

Пояснения к окну ввода параметров модели

Ноw many types do you want to use? - введите число видов жертв, которое вы хотите использовать (по умолчанию - 5, что достаточно в большинстве случаев). Далее для каждого из типов жертв вы должны ввести значения: E - Энергетическая ценность одного пищевого объекта (жертвы); должна быть положительным числом. H - Время обработки, требуемое для потребления жертвы; также должно быть положительным. R - Обилие данного типа жертв; должно быть положительным или нулевым.

Задавая значения H и R, следует иметь в виду, что обилие и время обработки определяют то, какая доля общего времени фуражирования используется хищником на поиск добычи, а какая на ее обработку. Доля времени потраченного на поиск составляет $1/(1+ER_iH_i)$. Таким образом, если сумма значений RH для всех видов жертв, включенных в рацион, намного больше единицы, это означает, что большая часть времени потрачена хищником на обработку, а не на поиск добычи. Хотя это и случается в очень

продуктивных местообитаниях, более типичной для естественных условий является ситуация, когда значения RH (т.е. произведений обилия на время обработки) для всех видов жертв не слишком превышают единицу, или же значительно меньше. Было бы чрезвычайно нетипично, если бы RH некоторого вида добычи был больше 10.

Пояснения к окну вывода результатов моделирования

Выводимый график показывает скорость потребления энергии для различных гипотетических пищевых рационов, которые сформированы путем ранжирования всех типов жертв в порядке убывания значений их E/H, и затем рассмотрения подмножеств, состоящих из: (1) только одного вида жертв с наивысшим рангом, (2) двух видов с наивысшим рангом, (3) трех видов с наивысшим рангом и т.д. Оптимальный рацион - это то подмножество, которое обеспечивает самую высокую скорость потребления энергии, что легко видно на графике.

В верхней части экрана программа выводит состав оптимального рациона в виде перечня рангов включенных в него видов жертв (Food Types in Optimal Diet: ...). Она также сообщает на какую величину (в процентах) понизится потребление энергии в случае включения в рацион еще одного вида жертв (Decrease in Q if I extra food included: ...) и исключения из рациона одного вида (Decrease in Q if I too few are included: ...).

Если вы хотите увидеть исходные значения параметров и ранги каждого вида жертв, вы можете нажать клавиши <Escape>, <Enter> или <Space Bar>, чтобы возвратиться окну введения параметров.

Исследование модели

Сначала запустите модель со значениями параметров, установленными по умолчанию. Внимательно проанализи-

руйте полученные результаты. Каков состав оптимального рациона? Попытайтесь объяснить, почему он именно такой? Почему ранги видов жертв распределились именно таким образом?

Теперь вы можете исследовать поведение модели, вводя иные значения исходных параметров и наблюдая их влияние на формирование оптимального рациона. Обязательно используйте функцию F4, чтобы видеть на экране результаты предшествующего цикла моделирования. Ваша основная задача - детально проверить все четыре заключения, сформулированные выше на основе теории оптимального фуражирования. При этом вы можете в качестве исходной ситуации использовать установленные по умолчанию параметры. Вот некоторые рекомендации для проверки каждого заключения:

- (1) Последовательно вводите все большие значения R для одного или обоих видов жертв, не входящих в состав оптимального рациона. Влияет ли это на рацион? Добейтесь расширения рациона на один вид жертвы, постепенно повышая его выгодность (т.е. увеличивая E, или уменьшая H). При каком значении выгодности происходит включение в рацион нового объекта питания?
- (2) А. Последовательно и строго пропорционально увеличивайте значения R для всех трех видов жертв, входящих в состав оптимального рациона; например: 2, 3, 4, 5, 10. Как это влияет на рацион? Вернитесь к прежним параметрам и добейтесь того же эффекта путем увеличения выгодности одного или двух видов жертв и (или) уменьшения выгодности остальных видов.
- Б. Теперь, установите исходные параметры и введите большее число типов пищи, например 8. Постепенно уменьшайте значения R для всех трех видов жертв, входящих в состав оптимального рациона; например: 0 5, 0.3, 0.2, 0 1, 0.05. Как это влияет на рацион? Вернитесь к преж-

ним параметрам и добейтесь того же эффекта путем уменьшения выгодности всех видов жертв, включенных в рацион, и (или) увеличения выгодности остальных видов.

- (3) Установите исходные параметры и то же число видов пищи (8). Последовательно и строго пропорционально уменьшайте обилие всех видов жертв; например: 1, 0 5, 0.2, 0.1, 0.05, 0.001. Как это влияет на состав оптимального рациона? Теперь, опять используя исходные параметры пропорционально увеличивайте обилие всех видов жертв; например: 1, 2, 3, 4, 5, 10. Как это сказывается на степени специализации хищника?
- (4) А. Установите, например, следующие значения E для 8 видов жертв: 20, 18, 15, 10, 5, 3, 2, 1. Пусть все значения H и R будут равны 1. Запустите модель и определите оптимальный рацион. Теперь последовательно и пропорционально уменьшайте время обработки H для всех видов жертв; например: 0.5, 0.3, 0.2, 0.1, 0.05, 0.001. Как это влияет на рацион? Б. Установите те же исходные значения, как и в предыдущем случае. Последовательно и пропорционально увеличивайте время обработки H для всех видов жертв; например: 1, 2, 3, 5, 10, 20. Как это влияет на рацион?

Рекомендуемая литература

- 1. Бигон, М., Дж. Харпер и К. Таунсенд. Экология.
- 2. Особи, популяции и сообщества. М.: Мир, 1989, том $1-\mathrm{c.}\ 430$ –434.

Занятие 17. <u>Моделирование сетей питания «хищ-</u> ник-жертва»

Модель Лотки-Вольтерры

Рассматриваемые в данном разделе программы разра-

ботаны для того, чтобы продемонстрировать характерные свойства системы популяций хищника и жертвы при их взаимодействии. Подобные взаимоотношения популяций свойственны практически всем природным сообществам. Одна из наиболее фундаментальных особенностей взаимодействия хищник-жертва — это присущая ему тенденция генерировать циклические изменения численности популяций как хищника, так и жертвы. Однако, подобная цикличность наблюдается не всегда, и нередко популяции хищника и жертвы могут достигать устойчивого равновесия, сохраняя постоянную численность в течение продолжительного времени. Наличие или отсутствие популяционных циклов зависит большей частью от двух факторов: (1) динамики роста популяции жертвы в отсутствие хищника, и (2) характера зависимости между плотностью популяции жертвы и средним числом жертв, поедаемых одним хищником в единицу времени (эту зависимость обычно называют функциональным ответом хищника). При прочих равных условиях вероятность возникновения популяционных циклов возрастает, если скорость роста популяции жертвы не зависит или слабо зависит от плотности популяции и/или если для функционального ответа хищника характерно быстрое увеличение скорости потребления жертвы с ростом ее плотности.

Простейшая модель взаимоотношений популяций хищника и жертвы, основанная на логистическом уравнении роста, названа (как и модель межвидовой конкуренции) по имени ее создателей – Лотки и Вольтерры. Эта модель крайне упрощает исследуемую ситуацию, но все же полезна в качестве отправной точки в анализе системы хищник-жертва.

Предположим, что (1) популяция жертвы существует в идеальной (независимой от плотности) среде, где ее рост может ограничивать только наличие хищника, (2) столь же

идеальна среда, в которой существует хищник, рост популяции которого ограничивает лишь обилие жертв, (3) обе популяции размножаются непрерывно согласно экспоненциальному уравнению роста, (4) скорость поедания жертв хищниками пропорциональна частоте встреч между ними, которая, в свою очередь, является функцией плотности популяций. Эти допущения и лежат в основе модели Лотки-Вольтерры.

Пусть в отсутствие хищников популяция жертвы растет экспоненциально:

$$dN/dt = r_1N$$
,

где N — численность, а r_1 — удельная мгновенная скорость роста популяции жертвы. Если же хищники присутствуют, то они уничтожают особей жертвы со скоростью, которая определяется, во-первых, частотой встреч хищников и жертв, возрастающей по мере увеличения их численностей, и, во-вторых, эффективностью, с которой хищник обнаруживает и ловит свою жертву при встрече. Число жертв, встреченных и съеденных одним хищником $N_{\rm C}$, пропорционально эффективности охоты, которую мы выразим через коэффициент C_1 , численности (плотности) жертвы N и времени, затраченному на поиски T:

$$N_{\rm C} = C_1 NT \tag{1}$$

Из этого выражения легко определить удельную скорость потребления жертв хищником (т.е. число жертв, поедаемых одной особью хищника в единицу времени), которую часто называют также функциональным ответом хищника на плотность популяции жертвы:

$$f = N_C / T = C_1 N \tag{2}$$

В рассматриваемой модели C_1 является константой. Это означает, что число жертв, изъятых хищниками из популя-

ции, линейно возрастает с увеличением ее плотности (так называемый функциональный ответ типа 1). Ясно, что общая скорость поедания жертв всеми особями хищника составит:

$$F = fP = C_1 NP, \tag{3}$$

где P — численность популяции хищника. Теперь мы можем записать уравнение роста популяции жертвы следующим образом:

$$dN/dt = r_1N - C_1NP \tag{4}$$

При отсутствии жертвы особи хищника голодают и гибнут. Предположим также, что в этом случае численность популяции хищника будет уменьшаться экспоненциально согласно уравнению:

$$dP/dt = -r_2P, (5)$$

где r_2 — удельная мгновенная смертность в популяции хищника.

Если жертвы присутствуют, то те особи хищника, которые смогут их найти и съесть, будут размножаться. Рождаемость в популяции хищника в данной модели зависит только от двух обстоятельств: скорости потребления жертв хищником и эффективности, с которой поглощенная пища перерабатывается хищником в его потомство. Если мы выразим эту эффективность через коэффициент s, то рождаемость составит:

$$B = sF = sC_1NP$$

Поскольку C_1 и s — константы, их произведение — это также константа, которую мы обозначим как C_2 . Тогда скорость роста популяции хищника будет определяться балансом рождаемости и смертности в соответствии с уравнением:

$$dP/dt = C_2NP - r_2P \tag{6}$$

Уравнения 4 и 6 вместе образуют модель Лотки-Вольтерры.

Свойства этой модели мы можем исследовать точно так же, как и в случае конкуренции, т.е. построив фазовую диаграмму, на которой численность жертвы отложена по оси ординат, а хищника – по оси абсцисс, и проведя на ней изоклины – линии, соответствующие постоянной численности популяций. С помощью таких изоклин определяют поведение взаимодействующих популяций хищника и жертвы.

Для популяции жертвы:

при
$$dN/dt = 0$$
 $r_1N = C_1NP$, откуда $P = r_1/C_1$

Таким образом, поскольку r_1 и C_1 — константы, изоклиной для жертвы будет линия, на которой численность хищника (P) является постоянной, т.е. параллельная оси абсцисс и пересекающая ось ординат в точке $P=r_1/C_1$. Выше этой линии численность жертвы будет уменьшаться, а ниже — возрастать.

Для популяции хищника:

при
$$dP/dt = 0$$
 $r_2P = C_2NP$, откуда $N = r_2/C_2$

Поскольку r_2 и C_2 — константы, изоклиной для хищника будет линия, на которой численность жертвы (N) является постоянной, т.е. перпендикулярная оси ординат и пересекающая ось абсцисс в точке $N = r_2/C_2$. Слева от нее численность хищника будет уменьшаться, а справа — возрастать.

Если мы рассмотрим эти две изоклины вместе, то легко заметим, что взаимодействие популяций хищника и жертвы

имеет циклический характер, поскольку их численности претерпевают неограниченные сопряженные колебания. Когда велико число жертв, численность хищников растет, что приводит к увеличению пресса хищничества на популяцию жертвы и тем самым к снижению ее численности. Это снижение, в свою очередь, ведет к нехватке пищи у хищников и падению их численности, которое вызывает ослабление пресса хищничества и увеличению численности жертвы, что снова приводит к росту популяции жертвы и т.д.

Для данной модели характерна так называемая "нейтральная стабильность", которая означает, что популяции неограниченно долго совершают один и тот же цикл колебаний д о тех пор, пока какое-либо внешнее воздействие не изменит их численность, после чего популяции совершают новый цикл колебаний с иными параметрами. Для того, чтобы циклы стали стабильными, популяции должны после внешнего воздействия стремиться вернуться к первоначальному циклу. Такие циклы, в отличие от нейтрально стабильных колебаний в модели Лотки-Вольтерры, принято называть устойчивыми предельными циклами.

Модель Лотки-Вольтерры, тем не менее, полезна тем, что позволяет продемонстрировать основную тенденцию в отношениях хищник-жертва — возникновение циклических сопряженных колебаний численности их популяций.

Практическая работа с моделью Лотки-Вольтерры

Пояснения к окну ввода параметров модели

Модель представляет результаты своей работы в виде двух диаграмм: P, N vs T — динамика численностей хищника и жертвы во времени

P vs N — фазово-плоскостная диаграмма

Поэтому сначала необходимо выбрать диаграмму, которую вы хотите увидеть в первую очередь ("Which plot would you like to view?").

Затем для каждой из двух популяций – жертвы (*Prey*) и хищника (*Predator*) – введите значения следующих параметров:

- N0, P0 Исходные численности популя ций жертвы и хищника , соответственно. Возможный интервал значений от 0 до 10000. По умолчанию N0 = P0 = 20.
- r_1 , r_2 Удельная мгновенная скорость роста популяции жертвы и удельная мгновенная смертность в популяции хищника, соответственно; значения r_1 , и r_2 в предлагаемой модели должны быть положительными и лежать в интервале от 0 до 5. По умолчанию $r_1 = r_2 = 0.1$.
- C_1 , C_2 Коэффициенты, характеризующие, соответственно, эффективность поиска и поимки добычи хищником и его способность преобразовывать съеденную пищу в собственное потомство. Возможный интервал значений от 0 до 999. По умолчанию $C_1 = C_2 = 0.01$. После этого введите число поколений, которое вы хотите проследить ("For how many generations would you like to run a model?"); возможный максимум 10000; по умолчанию 300. Заметьте, что данная модель продуцирует нейтрально стабильные колебания, для полного выявления которых обычно бывает достаточно нескольких десятков или сотен поколений. После введения всех параметров нажмите <Enter>.

Пояснения к окну вывода результатов моделирования

Диаграмма P, N v s T иллюстрирует изменения численности популяций хищника и жертвы во времени. Она демонстрирует нейтрально стабильные циклы популяций.

На фазовой диаграмме P vs N показаны изоклины для популяций хищника и жертвы и проведена траектория (P по отношению к N), которую циклически совершают две эти популяции при взаимодействии.

Исследование модели

Сначала запустите модель со значениями параметров, установленными по умолчанию. Внимательно рассмотрите обе диаграммы. К какому результату приводит взаимодействие хищника и жертвы? Как это можно определить по фазовой диаграмме?

Исследуйте фазовую диаграмму с помощью функции "Анализ стабильности", для чего нажмите <Alt+S>. Вы можете выбрать с помощью курсора любое начальное сочетание численностей обеих популяций и проследить за траекторией их взаимодействия в этих условиях.

Если вы разобрались с поведением модели, то можете вводить различные значения параметров и исследовать получаемые при этом результаты. Используйте функцию F4, чтобы сравнивать результаты двух последовательных циклов моделирования.

В результате исследования модели вы должны определить, какие исходные значения параметров приводят к следующим результатам:

- 1. Хищник полностью уничтожает жертву и затем вымирает сам (так называемый эффективный хищник);
- 2. Хищник вымирает, но жертва выживает и размножается;
- 3. Возникают сопряженные циклические колебания в системе популяций хищника и жертвы.

Занятие 18. <u>Имитационная обучающая программа</u> "Малая река"

Основная цель работы: ознакомление с имитационной программой "Малая река", моделирующей антропогенное воздействие на проточную водную экосистему с агропромышленными и жилыми комплексами, разработка оптимального управления экосистемой (выбор оптимальных параметров функционирования системы для достиже-

ния максимальной прибыли от хозяйственной деятельности в бассейне реки с учетом затрат).

В игре обучаемому предоставляется возможность управлять такой экологической системой, в состав которой входят промышленные предприятия и животноводческие хозяйства, расположенные на берегу реки, луга, поля и лесные участки вдоль реки, передвижная станция контроля за загрязнением реки.

Задача обучаемого состоит в том, чтобы правильно выбрать разнообразные параметры управления: интенсивность работы промышленных предприятий, вид скота и его поголовье для выращивания на животноводческой ферме, форму вспашки земли, количество и качество вносимых удобрений, вид выращиваемой сельскохозяйственной культуры, способ очистки сточных вод, лесопосадку и др.

Параметры выбираются на один год, после чего программа моделирует процесс развития экосистемы под управлением выбранных параметров.

Итогом будет как получение прибыли, так и загрязнение окружающей среды. Основная задача играющего состоит в том, чтобы в течение 5 лет так управлять экосистемой, чтобы полученная прибыль оказалась максимальной, а окружающей среде (конкретно - реке) был причинен минимальный ущерб. В зависимости от результата управления программа выставит обучаемому оценку его деятельности.

Для анализа собственной деятельности можно обратиться к программе и получить конкретные сведения о развили экологической системы в любой месяц, а о получающемся загрязнении - в течение трех часов после дождя.

Таким образом, игра:

- активизирует самостоятельность и творческую инициативу,
 - учит управлять развитием отношений общества и среды,

- способствует решению задачи экологической экспертизы,
- позволяет умело планировать и предвидеть последствия принимаемых решений, не проводя экспериментов на натуре,
- даст возможность оперативно корректировать хозяйственную деятельность.

Работа с программой ведется в диалоговом режиме. Игра рассчитана на персональное пользование. Время одной игры (пятилетнее) зависит только от быстроты ввода в ЭВМ параметров управления экосистемой.

Методические указания

Методические указания содержат; 1) общие сведения; 2) описание экологической системы; 3) управление экосистемой; 4) требования к обучаемому; 5) рекомендации по работе с программой; 6) оценку действий обучаемого.

ОПИСАНИЕ ЭКОЛОГИЧЕСКОЙ СИСТЕМЫ

Программа «Малая река» моделирует естественные процессы, происходящие в системе:

- участок реки,
- промышленное предприятие,
- животноводческий комплекс,
- сельскохозяйственные угодья,
- жилой поселок,
- передвижная станция контроля качества воды.

Описание элементов системы:

- 1. Участок реки длиной 8640 м, шириной 10 м, глубиной 3 м, средней скоростью течения 6 м/мин. Во время паводка скорость течения и расход воды в реке повышается.
- 2. Промышленное предприятие, расположенное на берегу реки на расстоянии 1800 метров от начала участка, загрязняющее воду реки стоками, содержащими органическое загрязняющее вещество (по БПК5). Количество сточ-

ных вод зависит от интенсивности работы предприятия, которая может изменяться от 0 до 150 условных единиц продукции в сутки. Производство единицы продукции дает 0,1 кубометра стоков с концентрацией органического загрязняющего вещества по БПК5 2000 мг/литр.

- 3. Животноводческий комплекс, расположенный на берегу реки на расстоянии 5400 метров от начала участка, на котором можно выращивать свиней (количеством от 0 до 2000 голов) или крупный рогатый скот (от 0 до 1000). На животноводческом комплексе в сутки на свинью образуется 4,5 литра навозной жижи с БПК5 6000 мг/литр, на корову 14 литров с БПК5 -8000 мг/литр.
- 4. Сельскохозяйственные угодья, на которых можно выращивать пшеницу, рожь, ячмень, кукурузу, картофель. Для повышения урожайности есть возможность внесения азотных, калийных, фосфорных, органических удобрений, известкования почвы (почва требует известкования), применения ядохимикатов (метафоса для борьбы с вредными насекомыми, цинеба для борьбы с болезнями растений, атразина для борьбы с сорняками). При использовании ядохимикатов и удобрений необходимо учитывать:
- дождевые и паводковые стоки будут загрязнять воду реки тем сильнее, чем больше внесено удобрений и ядохимикатов,
- накопление веществ, неусвоенных растениями, в почве влияет на величину загрязнения реки,
- существенное влияние на качество воды оказывают донные осаждения.
- 5. Жилой поселок забирает воду реки для своих нужд. Если вода в реке не достаточно чистая, то затрачиваются средства на ее очистку. В модели установлен предел допустимых концентраций (ПДК) в мг/л по:

кислороду - не менее 4 мг/л, БПК5 - не более б мг/л,

атразину - не более 0,005 мг/л, метафосу - не более 0,02 мг/л, цинебу - не более 0,03 мг/л.

6. Передвижная станция контроля качества воды анализирует содержание кислорода, БПК5, атразина, метафоса, цинеба в воде в любом выбранном месте участка реки.

Управление экосистемой

Работа обучаемого с программой состоит из последовательности туров, где каждый тур - управляющее воздействие на систему и получение результатов. Программа рассчитана на 5 туров - 5 лет.

Под управляющим воздействием понимается:

- выбор интенсивности работы промышленного предприятии,
- выбор количества голов скота для выращивания на ферме (свиньи или крупный рогатый скот),
- выбор методов счистки сточных вод промышленного предприятия и фермы,
- выбор сельскохозяйственных культур для выращивания в бассейне реки,
- выбор количества применяемых удобрений и ядохимикатов,
- размещение передвижной станции контроля качества воды,
 - выбор мероприятий по охране чистоты реки.

Цель работы обучаемого заключается в выборе оптимальных параметров функционирования системы для достижения максимальной прибыли от хозяйственной деятельности в бассейне реки с учетом затрат. При этом концентрации загрязняющих веществ в реке не должна превышать предельно допустимых норм. От этого зависит величина экономического ущерба.

Мероприятия по охране чистоты реки и их стоимость

Лесополоса

Выращивание древесной и кустарниковой растительности по берегам реки способствует уменьшению дождевого стока и выноса загрязняющих веществ. Влияние лесополосы растет с увеличением возраста лесополосы. Посадки лесополосы шириной 10 метров стоит 1000 руб.

Вспашка

При работе с программой необходимо учесть, что разные виды вспашки обеспечивают уменьшение дождевого стока в разной степени:

- уплотненная на 16 % (стоимость вспашки 100 га 1000 руб.),
 - отвальная с микролиманами на 63 % (1900 руб.),
 - безотвальная на 45 % (1700 руб.),
 - отвальная глубиной 22-25 см на 62 % (2500 руб.),
 - глубиной 35-37 см на 77 % (3000 руб.).

Очистка сточных вод

Для снижения концентрации загрязняющих веществ в сточных водах необходимо применять очистку. Использование механической очистки позволяет снизить концентрацию загрязняющих веществ, примерно, на 50 %, биологической очистки - на 80 %, биологической с доочисткой на 98 %.

Стоимость механической очистки 1 куб. м сточных вод - 0,05 руб., биологической - 0,38 руб., биологической с доочисткой - 2 руб.

Искусственная аэрация

Искусственная аэрация позволяет увеличить содержание кислорода в воде путем нагнетания воздуха в воду через аэраторы. Место искусственной аэрации можно изменять. При работе необходимо учесть, что концентрация кислорода зависит от концентрации органики (чем больше в воде органики, тем больше расходуется кислорода на ее разложение) и от температуры воды (чем выше температу-

ра, тем ниже концентрация кислорода). Повышение содержания кислорода в воде на 2 мг/л с помощью искусственной аэрации стоит 366 руб. в месяц.

Прибыль

Прибыль от ведения хозяйственной деятельности складывается из прибыли полученной от реализации условной продукции предприятия- 12 руб. за единицу, животноводческого комплекса (100*количество свиней) или (200*количество коров) руб. в год, урожая пшеницы - 30 руб. за центнер, ячменя - 30, ржи - 28, кукурузы - 12, картофеля - 10.

Затраты

Затраты складываются из затрат на осуществление природоохранных мероприятий (см. выше) и затрат на внесение удобрений и ядохимикатов. Стоимость внесения метафоса (на каждый гектар по 1 кг) - 434 руб., атразина - 1600, цинеба - 600, азотных удобрений - 400, калийных - 400, фосфорных - 400, органических (на каждый га по 1 т) - 2000, известкования -2000.

Экономический ущерб

Экономический ущерб зависит от качества воды в реке и складывается из потерь, связанных с ухудшением функционированием основных фондов промышленного предприятия; дополнительных затрат на очистку воды для жилого поселка; потерь из-за заболеваемости населения; затрат учреждений здравоохранения в связи с заболеваемостью населения; собственных затрат населения, связанных с поездками на отдых в другие места.

Рекомендации по работе с программой

В программе предусмотрено два вида ввода данных:

- ввод числовых значений осуществляется с помощью клавиш 0,1,2,...9. Дробная часть числа отеляется точкой (например 3.5). После набора числа необходимо нажать клавишу <ENTER>.
- выбор с помощью клавиш «стрелка вверх», «стрелка вниз» и \leq ENTER >.

После загрузки программы на экране появится заставка программы «Малая река». Для продолжении работы необходимо нажать пробел.

В начале тура задаются параметры функционирования системы: интенсивность работы промышленного предприятия, поголовье скота для выращивания на ферме, методы очистки сточных вод предприятия и фермы, полевая культура для выращивания на прибрежных полях, количество применяемых удобрений и пестицидов, вид вспашки, ширина лесопосадок моль реки, искусственная аэрация.

После задания параметров на экране можно наблюдать динамику концентраций кислорода, БПК5, атразина, цинеба, метафоса в речной воде и изменение уровня воды в реке. Шаг вычислений один месяц. Можно посмотреть динамику концентраций веществ после дождя в течение 72 часов, а также изменение концентраций веществ не только в месте нахождения передвижной станции контроля качества воды, но и вдоль реки в выбранном месяце (клавиши <F8> и <F9> соответственно).

После окончания 5 лет игрового времени программа даст оценку деятельности обучаемого.

5.2. Описание разделав меню.

ПОМОЩЬ - имеется подменю:

ПРАВИЛА - правила работы с программой (на экран выдается информация о моделируемой экологической системе, о цели игры, о возможных управляющих воздействиях на систему, о стоимости природоохранных мероприятиях и т.д.);

CXEMA - схема взаимодействия блоков системы (т.е. графическое изображение связей, моделируемых в программе);

ПРИРОДООХРАННЫЕ МЕРОПРИЯТИЯ - информация о природоохранных мероприятиях, моделируемых в программе (т.е. информация об эффективности разных методов очистки сточных вод, о влиянии разных видов вспашек на уменьшение дождевого стока, о влиянии лесополосы и искусственной аэрации);

ТЕКУЩАЯ ОПЕНКА - оценка деятельности обучаемого по турам (дается сообщение о полученной прибыли и экономическом ущербе за прошедшие туры работы с программой);

УПРАВЛЕНИЕ - имеется подменю:

ПРЕДПРИЯТИЕ - задается интенсивность работы предприятия (0-150) и способ очистки сточных вод;

ФЕРМА - задастся поголовье скота (свиньи или крупный рогатый скот) для выращивания на ферме и метод очистки сточных вод;

УРОЖАЙ - выбирается сельскохозяйственная культура для выращивания на полях и дозы применяемых удобрений и пестицидов;

ВСПАШКА - выбирается вид вспашки;

ЛЕСОПОЛОСА - выбирается ширина защитной лесополосы;

АЭРАЦИЯ - выбирается место искусственной аэрации;

СЧЕТ - вычисление концентраций кислорода, БПК 5, атразина, цинеба и мстафоса по месяцам в течении года. Перед этим предлагается выбрать расположение 'передвижной станции контроля качества воды (клавиши "ВЛЕВО", "вправо" и <Ептег>).

< Esc> - выход в операционную систему.

5.3. С помощью программы "Малая река" можно наблюдать ряд процессов и решать ряд задач:

ВТОРИЧНОЕ ЗАГРЯЗНЕНИЕ

В первый год внести в почву большие дозы удобрений и ядохимикатов, во второй год не вносить вообще. Наблюдать на втором году концентрации веществ, попавших в воду за счет вторичного загрязнения, т.е. за счет смыва донных осаждений и выноса веществ, неусвоенных растениями и оставшихся в почве.

УРОЖАЙНОСТЬ ПОЛЕВЫХ КУЛЬТУР

Задавать разные дозы удобрений и ядохимикатов, и наблюдать за изменениями урожайности.

ЭФФЕКТИВНОСТЬ ПРИРОДООХРАННЫХ ВОЗ-ДЕЙСТВИЙ. Каждый год задавать разные природоохранные воздействия (например, поочередно задавать методы очистки сточных вод: 1-й год без очистки. 2-й год механическая очистка, 3-й год биологическая, 4-й биологическая с доочисткой), оставляя без изменения другие управляющие воздействия, и наблюдать изменения концентраций веществ в реке и экономические характеристики.

Определить оптимальный метод очистки сточных вод предприятия, работающего с максимальной интенсивностью, и фермы с максимальным поголовьем скота.

ВОЗРАСТ ЛЕСОПОЛОСЫ

В первый год посадить лесополосу, внести в почву удобрения и ядохимикаты. В первый и последующие годы управляющие воздействия задавать одинаковыми и наблюдать за концентрациями и уменьшением экономического ущерба от загрязнения воды. Дозы веществ, вносимых в почву не должны быть большими, чтобы не вызвать вторичного загрязнения.

ВЫНОС ВЕЩЕСТВ С ПОЛЕЙ ДОЖДЕВЫМИ СТО-КАМИ. Вносил, разные дозы удобрений и ядохимикатов и наблюдать за изменением концентраций веществ в воде.

5.4. Примеры возможных вариантов функционирования системы. Если попытаться получить максимальную прибыль, мало заботясь о чистоте воды (экономя на этом), то задав следующие параметры:

интенсивность работы промышленного предприятия - 150; очистка сточных вод предприятия - механическая; поголовье скота - 2000 свиней;

очистка сточных вод фермы - механическая;

сельскохозяйственная культура - картофель;

удобрения (азотные - 50 кг/га, фосфорные - 45 кг/га, калийные -45 кг/га, органические - 10 т/га, известкование - 1 т/га);

пестициды (метафос - 30 кг/га, цинеб - 3 кг/га, атразин - 6 кг/га);

вспашка - уплотненная;

лесополоса шириной 30 м, получится результат за первый год:

прибыль - 1442 тыс.руб. затраты - 123 тыс.руб. экономический ущерб - 400.8 тыс. руб.

Слишком большой экономический ущерб говорит о том, что необходимо больше внимания уделить природоохранным мероприятии.

Необходимо улучшить очистку сточных вод, применять меньшее количество удобрений и пестицидов.

Если на природоохранные мероприятия затратить средств немного больше, то можно достичь нулевого экономического ущерба. Пример:

интенсивность работы промышленного предприятия - 150; очистка сточных вод предприятия - биологическая; поголовье скота - 2000 свиней:

очистка сточных вод фермы - биологическая с доочисткой; сельскохозяйственная культура - пшеница;

удобрения (азотные - 20 кг/га, фосфорные - 25 кг/га, калийные -20 кг/га, органические - 5 т/га, известкование - 1 т/га);

пестициды (метафос - 15 кг/га, цинеб - 2 кг/га, атразин - 3 кг/га);

вспашка - глубиной 35-37 см;

лесополоса шириной 30 м. Результат за первый год:

прибыль - 1096,4 тыс.руб. затраты - 185,9 тыс.руб. экономический ущерб - 0 тыс. руб. говорит о том, что управление системой ведется правильно. Получена высокая прибыль и обеспечена чистота воды в реке.

Оценка действий обучаемого

По окончании пяти лет игрового времени программа подводит оценку деятельности обучаемого по полученной прибыли и нанесенному экономическому ущербу.

Оценка "отлично" выставляется обучаемому если он получит прибыль 5 млн.руб. и экономический ущерб 0 руб.

При худших показателях оценка соответственно снижается.

Целью работы является разработка управления, которое привело бы Вас к положительной оценке.

Библиографический список:

- 1. Ганеев Ю. М. Решение задач аналида данных на персональном компьютере. Изд-во БГСХА, 1999.-44 с.
- 2. Гирусов Э.В., Бобылев С.Н. Новосёлов А.Л., Чепурных Н.В. Экология и экономика природопользования. М., 1998.

- 3. Гринин А.С., Орехов Н.А., Новиков В.Н. Математическое моделирование в экологии: Учеб. Пособие для вузов.- М.: ЮНИТИ-ДАНА, 2003. 269 с.
- 4. Гирусов Э.В., Бобылев С.Н. Новосёлов А.Л., Чепурных Н.В. Экология и экономика природопользования. М., 1998.
- 5. Матвеенко Е.Л., Мёрзлов А.В. и др. Основы системного анализа и моделирование экосистем. Методическое пособие для вузов. Москва Из-во учебно-научного центра «Земля России», 2003.-74 с.
- 6. Кипятков В.Е. Практикум по математическому моделированию в популяционной экологии учебное пособие). Санкт-Петербург, 2002.-62 с.
- 7. Пегов С.А., Хомяков П.М. Моделирование развития экологических систем. Л., Гидрометеоиздат, 1996.
- 8. Привало К.И. Математическое моделирование биологических систем в сельском хозяйстве: Учебное пособие. Курск: Изд-во КГСХА, 2001.-78 с.
- 9. Ризниченко Г.Ю. Лекции по математическим моделям в биологии. Часть 1.- -Ижевск: НИЦ Регулярная и хаотическая динамика», 2003, 232 стр.
- 10. Системный анализ. Учеб. Для вузов/ А.В. Антонов. 2-е изд., стер. М.: Высш. шк., 2006. 454 с.: ил.
- 11. Эколого-информационные технологии. Под редакцией А.С. Гринина, Калуга, «Облиздат», 1999.

Приложение 1

Показатели сельскохозяйственного производства Брянской области за 1996-2007 г.г.

 ${f Y}$ - уровень рентабельности (+), убыточности (-) по всей деятельности в с.-х. предприятиях, в % .

 X_{1} - наличие тракторов в хозяйствах всех категорий, штук,

 X_2 – посевные площади всех культур в хозяйствах всех категорий, тыс. га,

 X_3 – наличие зерноуборочных комбайнов, тыс. штук,

 X_4 – посевные площади с.-х. зерновых культур, тыс. га,

 X_5 - посевные площади с.-х. картофеля в хозяйствах всех категорий, тыс. га,

 X_6 - посевные площади с.-х. овощей в хозяйствах всех категорий, тыс. га,

 X_7 – валовой сбор зерновых культур, тыс. тонн,

 X_8 – урожайность зерновых культур, ц/га,

 X_9 - валовой сбор картофеля, тыс. тонн,

 X_{10} – урожайность картофеля, ц/га,

 ${\bf X_{11}}$ - валовой сбор овощей открытого грунта, тыс. тонн,

 X_{12} – урожайность овощей, ц/га

 X_{13} - реализация зерна, тыс. тонн,

 X_{14} - реализация картофеля, тыс. тонн,

 X_{15} - реализация овощей, тыс. тонн,

 X_{16} – поголовье КРС, тыс. голов,

 X_{17} – поголовье коров основного стада, тыс. голов,

 X_{18} – поголовье свиней в хозяйствах всех категорий, тыс. голов,

 X_{19} - поголовье овец в хозяйствах всех категорий, тыс. голов,

 X_{20} — реализовано на убой скота и птицы в хозяйствах всех категорий, тыс. тонн,

 X_{21} – производство молока в хозяйствах всех категорий, тыс. тонн,

 X_{22} – производство яиц в хозяйствах всех категорий, мил. штук,

 X_{23} - производство шерсти в хозяйствах всех категорий, тонн.

 X_{24} – среднегодовой удой от одной коровы, кг,

 X_{25} – реализация скота и птицы, тыс. тонн,

 X_{26} — реализация молока и молочных продуктов (в пересчёте на молоко), тыс. тонн,

 ${f X_{27}}$ – реализация яиц, мил. штук.

Приложение 2

Работа с пакетом программ Populus 3.4

После загрузки программы вы видите картинку с ее названием. Нажатие <Enter> вызывает появление текста Введения (Introduction), повторное нажатие <Enter> вызывает Основное Меню (Main Menu). Перемещая курсор в меню,

следует выбрать нужный вам основной раздел, нажать <Enter>, а затем выбрать подраздел и снова нажать <Enter>. Теперь вы увидите пояснительный текст на английском языке, в котором описаны основные особенности выбранной модели и использованная там математика. Еще одно нажатие <Enter> вызывает окно введения параметров модели, и вы переходите непосредственно к моделированию.

Ввод параметров модели

Каждая модель имеет окно ввода параметров, по которым производится моделирование. Пояснения к нему можно прочитать, нажав F1 (на английском языке), или в методичке. В модели может быть два или более вариантов моделирования или групп параметров модели, которые вы можете выбрать перемещая курсор с помощью клавиш <Space Bar> или < >> < >> . Затем, перемещая курсор от одного параметра к другому с помощью клавиш <Tab> или <!><!>, вы можете ввести любые их численные значения по своему желанию. Однако, в каждой модели существуют предельные разрешенные минимальные и максимальные значения всех параметров, которые вы можете определить, нажав F9 или F10 (подробнее см. раздел Клавиатурные команды Рориlus 3.4). После ввода всех параметров нажатием <Enter> вы переходите в режим моделирования.

Исследование модели

Результатом работы модели является один или несколько диаграмм, изображаемых на экране. Пояснения к ним можно прочитать, нажав F1 (на английском языке), или в методичке. Нажимая <Space Bar> или < >> >, вы можете последовательно переходить от одного графика к другому, или же к окну с несколькими графиками, изображающими те или иные зависимости между исследуемыми в модели параметрами. Нажатие <Esc> возвращает вас к окну ввода параметров и вы можете вводить новый набор данных. Если при этом вы хотите еще раз взглянуть на полученный

ранее график, нажмите <Alt+F4>, а затем вновь <Esc> для ввода новых параметров. Помните, что если вы введете новое значение хотя бы одного параметра и нажмете <Enter>, вся информация о результатах предшествующего цикла моделирования исчезнет из памяти компьютера. Если вы хотите ее сохранить, используйте функции сохранения параметров и результатов моделирования на диске <Alt+F5>, <Alt+F7> или <Alt+O> (подробнее см. ниже в разделе Сохранение параметров и результатов моделирования). Специальные функции, используемые при анализе моделей. *Координатная сетка.* Наличие координатной сетки

Координатная сетка. Наличие координатной сетки значительно облегчает правильное считывание значений параметров с осей координат и анализ графиков. Обязательно пользуйтесь этой функцией в работе. При нажатии <Alt+G> появляется основная координатная сетка; повторное нажатие <Alt+G> значительно увеличивает число вертикальных и горизонтальных линий сетки; еще одно нажатие <Alt+G> выключает данную функцию (сетка исчезает).

Переход к полулогарифмическому графику. При анализе динамики популяций очень полезным оказывается использование логарифмического масштаба на оси ординат. Переход от арифметического к логарифмическому масштабу и обратно происходит при нажатии клавиш <Alt+L>. Обязательно используйте эту функцию при анализе моделей, описывающих динамику численности популяций.

описывающих динамику численности популяций. *Изображение на графике результатов предшествующего моделирования*. Если вы хотите видеть на вновь построенном графике результаты предшествовавшего цикла моделирования, нажмите F4. В этом случае графики, полученные в предшествовавшем цикле моделирования, будут изображены черным цветом, а результаты нового цикла -обычными цветами. Эта функция очень полезна при сравнении поведения модели в разных условиях и ее следует широко использовать. Чтобы выключить функцию

опять нажмите F4. Следует иметь в виду, что эта функция работает только в тех моделях, у которых в нижнем правом углу окна ввода параметров есть пометка "F4".

Функция "Video Zoom". Позволяет увеличивать от-

Функция "Video Zoom". Позволяет увеличивать отдельные наиболее интересующие вас участки графика для более детального анализа. Для включения функции нажмите <Alt+Z>. При этом на графике появится пунктирный прямоугольник, правый верхний угол которого отмечен курсоромкрестиком. Перемещая этот курсор с помощью клавиш <^> <^> <!> <!> <!>, вы можете выбрать интересующий вас участок графика для увеличения. Вы можете также перемещать курсор на левую/правую или верхнюю/нижнюю стороны графика клавишами <Home>/<End> и <PgUp>/<PgDn>, или же на противоположный угол прямоугольника клавишей <N>. После выбора участка графика следует нажать <Enter> и вы увидите его в увеличенном виде. Возврат к первоначальному виду графика происходит при нажатии <R>, отключение функции "Video Zoom" с сохранением результатов ее работы в памяти при повторном нажатии <Alt+Z>, а отключение с удалением результатов из памяти при нажатии <Alt+C>. Все команды, реализуемые при включенной функции "Video Zoom", приведены ниже в разделе Клавиатурные команды.

Изменение скорости прорисовки графиков. По умолчанию программа рисует графики с той скоростью, с которой ваш компьютер способен обсчитывать данные. Однако в программе предусмотрен вариант замедленной прорисовки графиков для придания этому процессу динамичности и большей наглядности. Для включения этой функции нажмите <Alt+F>, и все ваши графики будут возникать на экране постепенно, как бы имитируя ход процесса во времени. Конкретную скорость прорисовки графиков в этом режиме можно задавать в опциях меню Для выключения функции вновь нажмите <Alt+F>.

Функция "Анализ стабильности". Анализ стабильности очень важен для понимания динамики экологических

и эволюционных моделей. В частности, он необходим при анализе фазовых диаграмм (конкуренция, взаимодействия хищника и жертвы и т.п.). Для включения данной функции необходимо после завершения построения фазовой диаграммы нажать <Alt+S>. При этом в поле графика появится курсор-крестик, который вы сможете перемещать с помощью клавиш $<\to><\uparrow><\to><\downarrow>$ в интересующую вас новую начальную точку, из которой будет проведена новая траектория, характеризующая течение процесса вперед (после нажатия <Enter> или <F>) или назад (после нажатия) во времени. Вы можете провести таким образом множество траекторий, начинающихся из любых точек графика.

Другой вариант работы данной функции заключается в одновременном проведении множества траекторий из одной или нескольких разных точек, расположенных либо по периметру графика, либо в узлах координатной сетки (число и положение этих точек могут быть предварительно заданы через опции меню). Для реализации данного варианта сразу после включения функции нажмите <M>.

Заметим что на некоторых графиках (например, в моделях, использующих 4 и более уравнений) изображены не все зависимые переменные В этих случаях при анализе стабильности используются первоначальные (т.е. установленные при вводе данных) значения переменных, не отображаемых на графике. Некоторые модели дают возможность изменять и эти переменные также. В этом случае, нажимая <Space Bar>, вы можете переходить к той или иной из переменных, значение которой разрешено изменять.

Учебное издание

Виктория Евгеньевна Мамеева

СИСТЕМНЫЙ АНАЛИЗ И ОСНОВЫ МОДЕЛИРОВАНИЯ ЭКОСИСТЕМ

Редактор Лебедева Е. М.

Подписано к печати 28.06.2011 г. Формат 60х84 1/24 Бумага печатная. Усл. п.л. 7,67. Тираж 100. Издат. № 1982.

Издательство Брянской государственной сельскохозяйственной академии 243365 Брянская обл., Выгоничский р-он, с. Кокино, Брянская ГСХА